About this Journal Submit a Manuscript Table of Contents
International Journal of Alzheimer’s Disease
Volume 2011 (2011), Article ID 537528, 11 pages
http://dx.doi.org/10.4061/2011/537528
Review Article

Issues Raised Involving the Copper Hypotheses in the Causation of Alzheimer's Disease

1Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
2Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
3Adeona Pharmaceuticals, Ann Arbor, MI 48103, USA

Received 2 April 2011; Revised 4 June 2011; Accepted 10 June 2011

Academic Editor: Rosanna Squitti

Copyright © 2011 George J. Brewer. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Alzheimer's Association, Alzheimer's Disease Facts and Figures, 2010.
  2. G. J. Brewer and D. A. Newsome, Toxic Copper: The Newly Discovered Culprit in Alzheimer's Disease and Dementia, Raisin Publishing, LLC, Ann Arbor, Mich, USA, 2010.
  3. W. Mally and P. Caldwell, Alzheimer's Disease, Key Porter Books, Toronto, Canada, 1998.
  4. C. S. Atwood, R. D. Moir, X. Huang et al., “Dramatic aggregation of alzheimer by Cu(II) is induced by conditions representing physiological acidosis,” Journal of Biological Chemistry, vol. 273, no. 21, pp. 12817–12826, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. A. I. Bush, W. H. Pettingell, G. Multhaup et al., “Rapid induction of Alzheimer Aβ amyloid formation by zinc,” Science, vol. 265, no. 5177, pp. 1464–1467, 1994. View at Scopus
  6. P. A. Adlard, L. Bica, A. R. White, et al., “Metal ionophore treatment restores dendritic spine density and synaptic protein levels in a mouse model of Alzheimer's disease,” PLoS ONE, vol. 6, no. 3, article e17669, 2011.
  7. G. J. Brewer, S. H. Kanzer, E. A. Zimmerman et al., “Subclinical zinc deficiency in Alzheimer's disease and Parkinson's disease,” American Journal of Alzheimer's Disease and other Dementias, vol. 25, no. 7, pp. 572–575, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. D. Religa, D. Strozyk, R. A. Cherny et al., “Elevated cortical zinc in Alzheimer disease,” Neurology, vol. 67, no. 1, pp. 69–75, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. G. J. Brewer, F. Askari, R. Dick, et al., “Treatment of Wilson's disease with tetrathiomolybdate: V. Control of free copper by tetrathiomolybdate and a comparison with trientine,” Translational Research, vol. 154, no. 2, pp. 70–77, 2009.
  10. R. Squitti, P. Pasqualetti, G. Dal Forno et al., “Excess of serum copper not related to ceruloplasmin in Alzheimer disease,” Neurology, vol. 64, no. 6, pp. 1040–1046, 2005. View at Scopus
  11. R. Squitti, G. Barbati, L. Rossi et al., “Excess of nonceruloplasmin serum copper in AD correlates with MMSE, CSF β-amyloid, and h-tau,” Neurology, vol. 67, no. 1, pp. 76–82, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. R. Squitti, F. Bressi, P. Pasqualetti et al., “Longitudinal prognostic value of serum "free" copper in patients with Alzheimer disease,” Neurology, vol. 72, no. 1, pp. 50–55, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. D. L. Sparks and B. G. Schreurs, “Trace amounts of copper in water induce β-amyloid plaques and learning deficits in a rabbit model of Alzheimer's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 19, pp. 11065–11069, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. D. L. Sparks, R. Friedland, S. Petanceska et al., “Trace copper levels in the drinking water, but not zinc or aluminum influence CNS Alzheimer-like pathology,” Journal of Nutrition, Health and Aging, vol. 10, no. 4, pp. 247–254, 2006. View at Scopus
  15. R. Deane, A. Sagare, M. Coma, et al., “A novel role for copper: disruption of LRP-dependent brain Abeta clearence,” in Proceedings of the Annual Meeting of the Society for Neuroscience, San Diego, Calif, USA, 2007.
  16. M. C. Morris, D. A. Evans, C. C. Tangney et al., “Dietary copper and high saturated and trans fat intakes associated with cognitive decline,” Archives of Neurology, vol. 63, no. 8, pp. 1085–1088, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. J. F. Quinn, S. Crane, C. Harris, and T. L. Wadsworth, “Copper in Alzheimer's disease: too much or too little?” Expert Review of Neurotherapeutics, vol. 9, no. 5, pp. 631–637, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. M. Waldman and M. Lamb, Dying for a Hamburger : Modern Meat Processing and the Epidemic of Alzheimer's Disease, Thomas Dune Books/St. Martin's Press, New York, NY, USA, 2005.
  19. W. Osler, Modern Medicine in Theory and Practice, Lea and Febiger, Philadelphia, Pa, USA, 1910.
  20. W. R. Gowers, A Manual of Diseases of the Nervous System, P Blakiston, Son, and Co, Philadelphia, Pa, USA, 1888.
  21. J. Strachey, A. Freud, A. Strachey, and A. Tyson, 24 Volumes Entitled, The Standard Edition of the Complete Psychological Works of Sigmund Freud, Written between 1895 and 1939, The Hogarth Press and the Institute of Psycho-Analysis, London, UK, 1966.
  22. W. Boyd, A Textbook of Pathology: An Introduction to Medicine, Lea and Febiger, Philadelphia, Pa, USA, 1938.
  23. C. P. Ferri, M. Prince, C. Brayne et al., “Global prevalence of dementia: a delphi consensus study,” Lancet, vol. 366, no. 9503, pp. 2112–2117, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. W. B. Grant, “Dietary links to Alzheimer's disease,” Alzheimer's Disease Review, vol. 2, pp. 42–55, 1997.
  25. X. Huang, C. S. Atwood, M. A. Hartshorn et al., “The Aβ peptide of Alzheimer's disease directly produces hydrogen peroxide through metal ion reduction,” Biochemistry, vol. 38, no. 24, pp. 7609–7616, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. T. J. Nelson and D. L. Alkon, “Oxidation of cholesterol by amyloid precursor protein and β-amyloid peptide,” Journal of Biological Chemistry, vol. 280, no. 8, pp. 7377–7387, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. G. Multhaup, A. Schlicksupp, L. Hesse et al., “The amyloid precursor protein of Alzheimer's disease in the reduction of copper(II) to copper(I),” Science, vol. 271, no. 5254, pp. 1406–1409, 1996. View at Scopus
  28. A. R. White, G. Multhaup, D. Galatis et al., “Contrasting, species-dependent modulation of copper-mediated neurotoxicity by the Alzheimer's disease amyloid precursor protein,” Journal of Neuroscience, vol. 22, no. 2, pp. 365–376, 2002. View at Scopus
  29. L. M. Sayre, G. Perry, P. L. R. Harris, Y. Liu, K. A. Schubert, and M. A. Smith, “In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer's disease: a central role for bound transition metals,” Journal of Neurochemistry, vol. 74, no. 1, pp. 270–279, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. Q. Ma, Y. Li, J. Du et al., “Copper binding properties of a tau peptide associated with Alzheimer's disease studied by CD, NMR, and MALDI-TOF MS,” Peptides, vol. 27, no. 4, pp. 841–849, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. G. M. Hill, G. J. Brewer, and A. S. Prasad, “Treatment of Wilson's disease with zinc. I. Oral zinc therapy regimens,” Hepatology, vol. 7, no. 3, pp. 522–528, 1987.
  32. J. M. Holden, W. R. Wolf, and W. Mertz, “Zinc and copper in self-selected diets,” Journal of the American Dietetic Association, vol. 75, no. 1, pp. 23–28, 1979.
  33. L. M. Klevay, S. J. Reck, and D. F. Barcome, “Evidence of dietary copper and zinc deficiencies,” Journal of the American Medical Association, vol. 241, no. 18, pp. 1916–1918, 1979. View at Publisher · View at Google Scholar
  34. S. Reiser, J. C. Smith, and W. Mertz, “Indices of copper status in humans consuming a typical American diet containing either fructose or starch,” American Journal of Clinical Nutrition, vol. 42, no. 2, pp. 242–251, 1985.
  35. G. J. Brewer, R. Danzeisen, B. R. Stern et al., “Letter to the editor and reply: toxicity of copper in drinking water,” Journal of Toxicology and Environmental Health, vol. 13, no. 6, pp. 449–459, 2010. View at Publisher · View at Google Scholar · View at PubMed
  36. R. Danzeisen, B. R. Stern, P. J. Aggett, et al., “Reply to George Brewer letter to the editor: toxicity of copper in drinking water,” Journal of Toxicology and Environmental Health, vol. 13, no. 6, pp. 449–459, 2010.
  37. National Research Council (U.S.). Committee on Copper in Drinking Water, Copper in Drinking Water, National Academy Press, Washington, D.C., USA, 2000.
  38. H. Kessler, T. A. Bayer, D. Bach et al., “Intake of copper has no effect on cognition in patients with mild Alzheimer's disease: a pilot phase 2 clinical trial,” Journal of Neural Transmission, vol. 115, no. 8, pp. 1181–1187, 2008. View at Publisher · View at Google Scholar · View at PubMed
  39. M. Miyata and J. D. Smith, “Apolipoprotein E allele-specific antioxidant activity and effects on cytotoxicity by oxidative insults and β-amyloid peptides,” Nature Genetics, vol. 14, no. 1, pp. 55–61, 1996. View at Publisher · View at Google Scholar · View at PubMed
  40. S. Moalem, M. E. Percy, D. F. Andrews et al., “Are hereditary hemochromatosis mutations involved in Alzheimer disease?” American Journal of Medical Genetics, vol. 93, no. 1, pp. 58–66, 2000. View at Publisher · View at Google Scholar
  41. P. Zambenedetti, G. De Bellis, I. Biunno, M. Musicco, and P. Zatta, “Transferrin C2 variant does confer a risk for Alzheimer's disease in caucasians,” Journal of Alzheimer's Disease, vol. 5, no. 6, pp. 423–427, 2003.
  42. S. Seshadri, A. Beiser, J. Selhub et al., “Plasma homocysteine as a risk factor for dementia and Alzheimer's disease,” New England Journal of Medicine, vol. 346, no. 7, pp. 476–483, 2002. View at Publisher · View at Google Scholar · View at PubMed
  43. E. Nakano, M. P. Williamson, N. H. Williams, and H. J. Powers, “Copper-mediated LDL oxidation by homocysteine and related compounds depends largely on copper ligation,” Biochimica et Biophysica Acta, vol. 1688, no. 1, pp. 33–42, 2004. View at Publisher · View at Google Scholar
  44. P. J. Crouch, W. H. Lin, P. A. Adlard et al., “Increasing Cu bioavailability inhibits Aβ oligomers and tau phosphorylation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 2, pp. 381–386, 2009. View at Publisher · View at Google Scholar · View at PubMed
  45. K. Ueda, H. Kawano, Y. Hasuo, and M. Fujishima, “Prevalence and etiology of dementia in a Japanese community,” Stroke, vol. 23, no. 6, pp. 798–803, 1992.
  46. L. White, H. Petrovitch, G. W. Ross et al., “Prevalence of dementia in older Japanese-American men in Hawaii: the Honolulu-Asia aging study,” Journal of the American Medical Association, vol. 276, no. 12, pp. 955–960, 1996. View at Publisher · View at Google Scholar
  47. G. M. Hill, G. J. Brewer, and J. E. Juni, “Treatment of Wilson's disease with zinc. II. Validation of oral 64coppper with copper balance,” American Journal of the Medical Sciences, vol. 292, no. 6, pp. 344–349, 1986.
  48. Y. Nose, B. E. Kim, and D. J. Thiele, “Ctr1 drives intestinal copper absorption and is essential for growth, iron metabolism, and neonatal cardiac function,” Cell Metabolism, vol. 4, no. 3, pp. 235–244, 2006. View at Publisher · View at Google Scholar · View at PubMed
  49. C. Salustri, G. Barbati, R. Ghidoni et al., “Is cognitive function linked to serum free copper levels? A cohort study in a normal population,” Clinical Neurophysiology, vol. 121, no. 4, pp. 502–507, 2010. View at Publisher · View at Google Scholar · View at PubMed
  50. G. J. Brewer, S. H. Kanzer, E. A. Zimmerman, D. F. Celmins, S. M. Heckman, and R. Dick, “Copper and ceruloplasmin abnormalities in Alzheimers disease,” American Journal of Alzheimer's Disease and other Dementias, vol. 25, no. 6, pp. 490–497, 2010. View at Publisher · View at Google Scholar · View at PubMed
  51. N. Arnal, D. O. Cristalli, M. J. T. de Alaniz, and C. A. Marra, “Clinical utility of copper, ceruloplasmin, and metallothionein plasma determinations in human neurodegenerative patients and their first-degree relatives,” Brain Research, vol. 1319, no. C, pp. 118–130, 2010. View at Publisher · View at Google Scholar · View at PubMed
  52. R. Danzeisen, M. Araya, B. Harrison et al., “How reliable and robust are current biomarkers for copper status?” British Journal of Nutrition, vol. 98, no. 4, pp. 676–683, 2007. View at Publisher · View at Google Scholar · View at PubMed
  53. G. J. Brewer, R. D. Dick, V. D. Johnson, et al., “Treatment of Wilson's disease with zinc: XV long-term follow-up studies,” The Journal of Laboratory and Clinical Medicine, vol. 132, no. 4, pp. 264–278, 1998.
  54. H. Kessler, F. G. Pajonk, P. Meisser et al., “Cerebrospinal fluid diagnostic markers correlate with lower plasma copper and ceruloplasmin in patients with Alzheimer's disease,” Journal of Neural Transmission, vol. 113, no. 11, pp. 1763–1769, 2006. View at Publisher · View at Google Scholar · View at PubMed
  55. T. A. Bayer, S. Schäfer, A. Simons et al., “Dietary Cu stabilizes brain superoxide dismutase 1 activity and reduces amyloid Aβ production in APP23 transgenic mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 2, pp. 14187–14192, 2003. View at Publisher · View at Google Scholar · View at PubMed
  56. L. M. Klevay, “Alzheimer's disease as copper deficiency,” Medical Hypotheses, vol. 70, no. 4, pp. 802–807, 2008. View at Publisher · View at Google Scholar · View at PubMed
  57. P. Hedera, J. K. Fink, P. L. Bockenstedt, and G. J. Brewer, “Myelopolyneuropathy and pancytopenia due to copper deficiency and high zinc levels of unknown origin: further support for existence of a new zinc overload syndrome,” Archives of Neurology, vol. 60, no. 9, pp. 1303–1306, 2003. View at Publisher · View at Google Scholar · View at PubMed
  58. P. Hedera, A. Peltier, J. K. Fink, S. Wilcock, Z. London, and G. J. Brewer, “Myelopolyneuropathy and pancytopenia due to copper deficiency and high zinc levels of unknown origin II. The denture cream is a primary source of excessive zinc,” NeuroToxicology, vol. 30, no. 6, pp. 996–999, 2009. View at Publisher · View at Google Scholar · View at PubMed