About this Journal Submit a Manuscript Table of Contents
International Journal of Alzheimer’s Disease
Volume 2012 (2012), Article ID 314185, 11 pages
http://dx.doi.org/10.1155/2012/314185
Review Article

Microglia in Alzheimer's Disease: It's All About Context

1Regenerative Medicine Institute Neural Program and Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Steven Spielberg Building Room 345, Los Angeles, CA 90048, USA
2Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Steven Spielberg Building Room 345, Los Angeles, CA 90048, USA
3Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90048, USA

Received 13 February 2012; Accepted 9 April 2012

Academic Editor: Colin Combs

Copyright © 2012 Tara M. Weitz and Terrence Town. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Wisniewski, J. Wegiel, K. Wang, M. Kujawa, and B. Lach, “Ultrastructural studies of the cells forming amyloid fibers in classical plaques,” Canadian Journal of Neurological Sciences, vol. 16, no. 4, pp. 535–542, 1989. View at Scopus
  2. H. Wisniewski, J. Wegiel, K. C. Wang, and B. Lach, “Ultrastructural studies of the cells forming amyloid in the cortical vessel wall in Alzheimer's disease,” Acta Neuropathologica, vol. 84, no. 2, pp. 117–127, 1992. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Frackowiak, H. Wisniewski, J. Wegiel, G. Merz, K. Iqbal, and K. C. Wang, “Ultrastructure of the microglia that phagocytose amyloid and the microglia that produce β-amyloid fibrils,” Acta Neuropathologica, vol. 84, no. 3, pp. 225–233, 1992. View at Scopus
  4. H. Wisniewski, M. Barcikowska, and E. Kida, “Phagocytosis of β/A4 amyloid fibrils of the neuritic neocortical plaques,” Acta Neuropathologica, vol. 81, no. 5, pp. 588–590, 1991. View at Scopus
  5. H. Akiyama, H. Kondo, H. Mori et al., “The amino-terminally truncated forms of amyloid β-protein in brain macrophages in the ischemic lesions of Alzheimer's disease patients,” Neuroscience Letters, vol. 219, no. 2, pp. 115–118, 1996. View at Publisher · View at Google Scholar · View at Scopus
  6. V. W. Yong and S. Rivest, “Taking advantage of the systemic immune system to cure brain diseases,” Neuron, vol. 64, no. 1, pp. 55–60, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Rezai-Zadeh, D. Gate, and T. Town, “CNS infiltration of peripheral immune cells: D-Day for neurodegenerative disease?” Journal of Neuroimmune Pharmacology, vol. 4, no. 4, pp. 462–475, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Gate, K. Rezai-Zadeh, D. Jodry, A. Rentsendorj, and T. Town, “Macrophages in Alzheimer's disease: the blood-borne identity,” Journal of Neural Transmission, vol. 117, no. 8, pp. 961–970, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. R. M. Ransohoff, P. Kivisäkk, and G. Kidd, “Three or more routes for leukocyte migration into the central nervous system,” Nature Reviews Immunology, vol. 3, no. 7, pp. 569–581, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. C. A. Hawkes and J. McLaurin, “Selective targeting of perivascular macrophages for clearance of β-amyloid in cerebral amyloid angiopathy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 4, pp. 1261–1266, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Town, V. Nikolic, and J. Tan, “The microglial “activation” continuum: from innate to adaptive responses,” Journal of Neuroinflammation, vol. 2, no. 1, article 2, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. C. A. Colton, R. T. Mott, H. Sharpe, Q. Xu, W. E. Van Nostrand, and M. P. Vitek, “Expression profiles for macrophage alternative activation genes in AD and in mouse models of AD,” Journal of Neuroinflammation, vol. 3, no. 1, article 27, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. C. A. Colton, “Heterogeneity of microglial activation in the innate immune response in the brain,” Journal of Neuroimmune Pharmacology, vol. 4, no. 4, pp. 399–418, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Colton and D. Wilcock, “Assessing activation states in microglia,” CNS and Neurological Disorders, vol. 9, no. 2, pp. 174–191, 2010. View at Scopus
  15. L. Meda, M. A. Cassatella, G. I. Szendrei et al., “Activation of microglial cells by β-amyloid protein and interferon-γ,” Nature, vol. 374, no. 6523, pp. 647–650, 1995. View at Scopus
  16. J. Tan, T. Town, D. Paris et al., “Microglial activation resulting from CD40-CD40l interaction after β- amyloid stimulation,” Science, vol. 286, no. 5448, pp. 2352–2355, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. P. L. McGeer and E. McGeer, “Inflammation and the degenerative diseases of aging,” Annals of the New York Academy of Sciences, vol. 1035, no. 1, pp. 104–116, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. P. McGeer, E. McGeer, J. Rogers, and J. Sibley, “Anti-inflammatory drugs and Alzheimer disease,” The Lancet, vol. 335, no. 8696, p. 1037, 1990. View at Scopus
  19. P. McGeer and J. Rogers, “Anti-inflammatory agents as a therapeutic approach to Alzheimer's disease,” Neurology, vol. 42, no. 2, pp. 447–449, 1992. View at Scopus
  20. P. McGeer, M. Schulzer, and E. G. McGeer, “Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer's disease: a review of 17 epidemiologic studies,” Neurology, vol. 47, no. 2, pp. 425–432, 1996. View at Scopus
  21. I. Mackenzie and D. Munoz, “Nonsteroidal anti-inflammatory drug use and Alzheimer-type pathology in aging,” Neurology, vol. 50, no. 4, pp. 986–990, 1998. View at Scopus
  22. S. Weggen, J. L. Eriksen, P. Das et al., “A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity,” Nature, vol. 414, no. 6860, pp. 212–216, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. C. A. Szekely, J. E. Thorne, P. P. Zandi et al., “Nonsteroidal anti-inflammatory drugs for the prevention of Alzheimer's disease: a systematic review,” Neuroepidemiology, vol. 23, no. 4, pp. 159–169, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Lim, F. Yang, T. Chu et al., “Ibuprofen suppresses plaque pathology and inflammation in a mouse model for alzheimer's disease,” Journal of Neuroscience, vol. 20, no. 15, pp. 5709–5714, 2000. View at Scopus
  25. P. T. Jantzen, K. E. Connor, G. DiCarlo et al., “Microglial activation and β-amyloid deposit reduction caused by a nitric oxide-releasing nonsteroidal anti-inflammatory drug in amyloid precursor protein plus presenilin-1 transgenic mice,” The Journal of Neuroscience, vol. 22, no. 6, pp. 2246–2254, 2002. View at Scopus
  26. Q. Yan, J. Zhang, H. Liu et al., “Anti-inflammatory drug therapy alters β-amyloid processing and deposition in an animal model of Alzheimer's disease,” Journal of Neuroscience, vol. 23, no. 20, pp. 7504–7509, 2003. View at Scopus
  27. M. T. Heneka, M. Sastre, L. Dumitrescu-Ozimek et al., “Acute treatment with the PPARγ agonist pioglitazone and ibuprofen reduces glial inflammation and Aβ1-42 levels in APPV717I transgenic mice,” Brain, vol. 128, no. 6, pp. 1442–1453, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. D. M. Wilcock, P. T. Jantzen, Q. Li, D. Morgan, and M. N. Gordon, “Amyloid-β vaccination, but not nitro-nonsteroidal anti-inflammatory drug treatment, increases vascular amyloid and microhemorrhage while both reduce parenchymal amyloid,” Neuroscience, vol. 144, no. 3, pp. 950–960, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Kukar, M. P. Murphy, J. L. Eriksen et al., “Diverse compounds mimic Alzheimer disease-causing mutations by augmenting Aβ42 production,” Nature Medicine, vol. 11, no. 5, pp. 545–550, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Tan, T. Town, F. Crawford et al., “Role of CD40 ligand in amyloidosis in transgenic Alzheimer's mice,” Nature Neuroscience, vol. 5, no. 12, pp. 1288–1293, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. K. P. Townsend, T. Town, T. Mori et al., “CD40 signaling regulates innate and adaptive activation of microglia in response to amyloid β-peptide,” European Journal of Immunology, vol. 35, no. 3, pp. 901–910, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. X. Qiao, D. J. Cummins, and S. M. Paul, “Neuroinflammation-induced acceleration of amyloid deposition in the APPV717F transgenic mouse,” European Journal of Neuroscience, vol. 14, no. 3, pp. 474–482, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Mori, N. Koyama, G. W. Arendash, Y. Horikoshi-Sakuraba, J. Tan, and T. Town, “Overexpression of human S100B exacerbates cerebral amyloidosis and gliosis in the Tg2576 mouse model of Alzheimer's disease,” GLIA, vol. 58, no. 3, pp. 300–314, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Fuhrmann, T. Bittner, C. K. E. Jung et al., “Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer's disease,” Nature Neuroscience, vol. 13, no. 4, pp. 411–413, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Oddo, A. Caccamo, J. D. Shepherd et al., “Triple-transgenic model of Alzheimer's Disease with plaques and tangles: intracellular Aβ and synaptic dysfunction,” Neuron, vol. 39, no. 3, pp. 409–421, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Lee, N. H. Varvel, M. E. Konerth et al., “CX3CR1 deficiency alters microglial activation and reduces beta-amyloid deposition in two Alzheimer's disease mouse models,” American Journal of Pathology, vol. 177, no. 5, pp. 2549–2562, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. G. N. Patrick, L. Zukerberg, M. Nikolic, S. De La Monte, P. Dikkes, and L. H. Tsai, “Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration,” Nature, vol. 402, no. 6762, pp. 615–622, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. J. R. Sundaram, E. S. Chan, C. P. Poore, et al., “Cdk5/p25-induced cytosolic PLA2-mediated lysophosphatidylcholine production regulates neuroinflammation and triggers neurodegeneration,” Journal of Neuroscience, vol. 32, no. 3, pp. 1020–1034, 2012.
  39. T. E. Golde, “Inflammation takes on Alzheimer disease,” Nature Medicine, vol. 8, no. 9, pp. 936–938, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. A. R. Group, C. Lyketsos, J. Breitner, et al., “Naproxen and celecoxib do not prevent AD in early results from a randomized controlled trial,” Neurology, vol. 68, no. 21, pp. 1800–1808, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. B. K. Martin, C. Szekely, J. Brandt et al., “Cognitive function over time in the Alzheimer's disease anti-inflammatory prevention trial (ADAPT): results of a randomized, controlled trial of naproxen and celecoxib,” Archives of Neurology, vol. 65, no. 7, pp. 896–905, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. P. L. McGeer and E. G. McGeer, “NSAIDs and Alzheimer disease: epidemiological, animal model and clinical studies,” Neurobiology of Aging, vol. 28, no. 5, pp. 639–647, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. J. C. Breitner, L. D. Baker, T. J. Montine et al., “Extended results of the Alzheimer's disease anti-inflammatory prevention trial,” Alzheimer's and Dementia, vol. 7, no. 4, pp. 402–411, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. C. Holmes, C. Cunningham, E. Zotova et al., “Systemic inflammation and disease progression in Alzheimer disease,” Neurology, vol. 73, no. 10, pp. 768–774, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. D. Schenk, R. Barbour, W. Dunn et al., “Immunization with amyloid-β attenuates Alzheimer disease-like pathology in the PDAPP mouse,” Nature, vol. 400, no. 6740, pp. 173–177, 1999. View at Publisher · View at Google Scholar · View at Scopus
  46. C. Janus, J. Pearson, J. McLaurin et al., “Aβ peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer's disease,” Nature, vol. 408, no. 6815, pp. 979–982, 2000. View at Publisher · View at Google Scholar · View at Scopus
  47. D. Morgan, D. M. Diamond, P. E. Gottschall et al., “A β peptide vaccination prevents memory loss in an animal model of Alzheimer's disease,” Nature, vol. 408, no. 6815, pp. 982–985, 2000. View at Publisher · View at Google Scholar · View at Scopus
  48. F. Bard, C. Cannon, R. Barbour et al., “Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease,” Nature Medicine, vol. 6, no. 8, pp. 916–919, 2000. View at Publisher · View at Google Scholar · View at Scopus
  49. E. Check, “Nerve inflammation halts trial for Alzheimer's drug,” Nature, vol. 415, no. 6871, p. 462, 2002. View at Scopus
  50. J. A. R. Nicolll, D. Wilkinson, C. Holmes, P. Steart, H. Markham, and R. O. Weller, “Neuropathology of human Alzheimer disease after immunization with amyloid-β peptide: a case report,” Nature Medicine, vol. 9, no. 4, pp. 448–452, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. C. Holmes, D. Boche, D. Wilkinson et al., “Long-term effects of Aβ42 immunisation in Alzheimer's disease: follow-up of a randomised, placebo-controlled phase I trial,” The Lancet, vol. 372, no. 9634, pp. 216–223, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. E. Masliah, M. Mallory, L. Hansen et al., “Immunoreactivity of CD45, a protein phosphotyrosine phosphatase, in Alzheimer's disease,” Acta Neuropathologica, vol. 83, no. 1, pp. 12–20, 1991. View at Publisher · View at Google Scholar · View at Scopus
  53. J. Tan, T. Town, T. Mori et al., “CD45 opposes β-amyloid peptide-induced microglial activation via inhibition of p44/42 mitogen-activated protein kinase,” Journal of Neuroscience, vol. 20, no. 20, pp. 7587–7594, 2000. View at Scopus
  54. Y. Zhu, H. Hou, K. Rezai-Zadeh et al., “CD45 deficiency drives amyloid-β peptide oligomers and neuronal loss in Alzheimer's disease mice,” Journal of Neuroscience, vol. 31, no. 4, pp. 1355–1365, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. S. S. Shaftel, S. Kyrkanides, J. A. Olschowka, J. N. H. Miller, R. E. Johnson, and M. K. O'Banion, “Sustained hippocampal IL-1β overexpression mediates chronic neuroinflammation and ameliorates Alzheimer plaque pathology,” Journal of Clinical Investigation, vol. 117, no. 6, pp. 1595–1604, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. P. Chakrabarty, C. Ceballos-Diaz, A. Beccard et al., “IFN-γ promotes complement expression and attenuates amyloid plaque deposition in amyloid β precursor protein transgenic mice,” Journal of Immunology, vol. 184, no. 9, pp. 5333–5343, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. P. Chakrabarty, K. Jansen-West, A. Beccard et al., “Massive gliosis induced by interleukin-6 suppresses Aβ deposition in vivo: evidence against inflammation as a driving force for amyloid deposition,” FASEB Journal, vol. 24, no. 2, pp. 548–559, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. P. Chakrabarty, A. Herring, C. Ceballos-Diaz, P. Das, and T. E. Golde, “Hippocampal expression of murine TNFα results in attenuation of amyloid deposition in vivo,” Molecular Neurodegeneration, vol. 6, no. 1, article 16, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. G. DiCarlo, D. Wilcock, D. Henderson, M. Gordon, and D. Morgan, “Intrahippocampal LPS injections reduce Aβ load in APP+PS1 transgenic mice,” Neurobiology of Aging, vol. 22, no. 6, pp. 1007–1012, 2001. View at Publisher · View at Google Scholar · View at Scopus
  60. D. M. Wilcock, M. R. Lewis, W. E. van Nostrand et al., “Progression of amyloid pathology to Alzheimer's disease pathology in an amyloid precursor protein transgenic mouse model by removal of nitric oxide synthase 2,” Journal of Neuroscience, vol. 28, no. 7, pp. 1537–1545, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. T. Town, V. Nikolic, and J. Tan, “The microglial “activation” continuum: from innate to adaptive responses,” Journal of Neuroinflammation, vol. 2, article 24, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. C. A. Colton, R. T. Mott, H. Sharpe, Q. Xu, W. E. van Nostrand, and M. P. Vitek, “Expression profiles for macrophage alternative activation genes in AD and in mouse models of AD,” Journal of Neuroinflammation, vol. 3, article 27, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. C. A. Colton and D. M. Wilcock, “Assessing activation states in microglia,” CNS and Neurological Disorders, vol. 9, no. 2, pp. 174–191, 2010. View at Scopus
  64. S. A. Grathwohl, R. E. Kälin, T. Bolmont et al., “Formation and maintenance of Alzheimer's disease β-amyloid plaques in the absence of microglia,” Nature neuroscience, vol. 12, no. 11, pp. 1361–1363, 2009. View at Scopus
  65. A. K. Stalder, F. Ermini, L. Bondolfi et al., “Invasion of hematopoietic cells into the brain of amyloid precursor protein transgenic mice,” Journal of Neuroscience, vol. 25, no. 48, pp. 11125–11132, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. A. R. Simard, D. Soulet, G. Gowing, J. P. Julien, and S. Rivest, “Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease,” Neuron, vol. 49, no. 4, pp. 489–502, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. J. El Khoury, M. Toft, S. E. Hickman et al., “Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease,” Nature Medicine, vol. 13, no. 4, pp. 432–438, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. Y. Laouar, T. Town, D. Jeng et al., “TGF-β signaling in dendritic cells is a prerequisite for the control of autoimmune encephalomyelitis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 31, pp. 10865–10870, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. T. Town, Y. Laouar, C. Pittenger et al., “Blocking TGF-β-Smad2/3 innate immune signaling mitigates Alzheimer-like pathology,” Nature Medicine, vol. 14, no. 6, pp. 681–687, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. F. Geissmann, S. Jung, and D. R. Littman, “Blood monocytes consist of two principal subsets with distinct migratory properties,” Immunity, vol. 19, no. 1, pp. 71–82, 2003. View at Publisher · View at Google Scholar · View at Scopus
  71. C. Sunderkötter, T. Nikolic, M. J. Dillon et al., “Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response,” Journal of Immunology, vol. 172, no. 7, pp. 4410–4417, 2004. View at Scopus
  72. G. P. Lim, T. Chu, F. Yang, W. Beech, S. A. Frautschy, and G. M. Cole, “The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse,” Journal of Neuroscience, vol. 21, no. 21, pp. 8370–8377, 2001. View at Scopus