About this Journal Submit a Manuscript Table of Contents
International Journal of Alzheimer’s Disease
Volume 2012 (2012), Article ID 406561, 6 pages
http://dx.doi.org/10.1155/2012/406561
Review Article

MicroRNAs and the Regulation of Tau Metabolism

1Axe Neurosciences, Centre de Recherche du CHUQ (CHUL), Québec, QC, Canada G1V 4G2
2Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec, QC, Canada G1V 0A6
3Faculté de Médecine, Université Lille-Nord de France, UDSL, 59044 Lille, France
4Inserm, UMR837, 59045 Lille, France

Received 24 February 2012; Accepted 19 April 2012

Academic Editor: Lars M. Ittner

Copyright © 2012 Sébastien S. Hébert et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. C. Lee, R. L. Feinbaum, and V. Ambros, “The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14,” Cell, vol. 75, no. 5, pp. 843–854, 1993. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Lee, R. Feinbaum, and V. Ambros, “A short history of a short RNA,” Cell, vol. 116, pp. S89–S92, 2004. View at Scopus
  3. L. Ma and R. A. Weinberg, “Micromanagers of malignancy: role of microRNAs in regulating metastasis,” Trends in Genetics, vol. 24, no. 9, pp. 448–456, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. S. P. Nana-Sinkam and C. M. Croce, “MicroRNAs as therapeutic targets in cancer,” Translational Research, vol. 157, no. 4, pp. 216–225, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. S. S. Hébert and B. de Strooper, “Alterations of the microRNA network cause neurodegenerative disease,” Trends in Neurosciences, vol. 32, no. 4, pp. 199–206, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. E. A. Miska, E. Alvarez-Saavedra, M. Townsend et al., “Microarray analysis of microRNA expression in the developing mammalian brain,” Genome Biology, vol. 5, no. 9, p. R68, 2004. View at Scopus
  7. O. Barad, E. Meiri, A. Avniel et al., “MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues,” Genome Research, vol. 14, no. 12, pp. 2486–2494, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. L. F. Sempere, S. Freemantle, I. Pitha-Rowe, E. Moss, E. Dmitrovsky, and V. Ambros, “Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation,” Genome biology, vol. 5, no. 3, p. R13, 2004. View at Scopus
  9. N. Y. Shao, H. Y. Hu, Z. Yan et al., “Comprehensive survey of human brain microRNA by deep sequencing,” BMC Genomics, vol. 11, p. 409, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. J. E. Babiarz, R. Hsu, C. Melton, M. Thomas, E. M. Ullian, and R. Blelloch, “A role for noncanonical microRNAs in the mammalian brain revealed by phenotypic differences in Dgcr8 versus Dicer1 knockouts and small RNA sequencing,” RNA, vol. 17, no. 8, pp. 1489–1501, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Vasudevan, Y. Tong, and J. A. Steitz, “Switching from repression to activation: microRNAs can up-regulate translation,” Science, vol. 318, no. 5858, pp. 1931–1934, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. R. F. Place, L. C. Li, D. Pookot, E. J. Noonan, and R. Dahiya, “MicroRNA-373 induces expression of genes with complementary promoter sequences,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 5, pp. 1608–1613, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Baek, J. Villén, C. Shin, F. D. Camargo, S. P. Gygi, and D. P. Bartel, “The impact of microRNAs on protein output,” Nature, vol. 455, no. 7209, pp. 64–71, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Selbach, B. Schwanhäusser, N. Thierfelder, Z. Fang, R. Khanin, and N. Rajewsky, “Widespread changes in protein synthesis induced by microRNAs,” Nature, vol. 455, no. 7209, pp. 58–63, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Buée, T. Bussière, V. Buée-Scherrer, A. Delacourte, and P. R. Hof, “Tau protein isoforms, phosphorylation and role in neurodegenerative disorders,” Brain Research Reviews, vol. 33, no. 1, pp. 95–130, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Morris, S. Maeda, K. Vossel, and L. Mucke, “The Many faces of tau,” Neuron, vol. 70, no. 3, pp. 410–426, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Brandt and J. Leschik, “Functional interactions of tau and their relevance for Alzheimer's disease,” Current Alzheimer Research, vol. 1, no. 4, pp. 255–269, 2004. View at Scopus
  18. L. M. Ittner, Y. D. Ke, F. Delerue et al., “Dendritic function of tau mediates amyloid-β toxicity in Alzheimer's disease mouse models,” Cell, vol. 142, no. 3, pp. 387–397, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. P. J. Chapple, K. Anthony, T. R. Martin, A. Dev, T. A. Cooper, and J. M. Gallo, “Expression, localization and tau exon 10 splicing activity of the brain RNA-binding protein TNRC4,” Human Molecular Genetics, vol. 16, no. 22, pp. 2760–2769, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Andreadis, “Tau gene alternative splicing: expression patterns, regulation and modulation of function in normal brain and neurodegenerative diseases,” Biochimica Et Biophysica Acta, vol. 1739, no. 2, pp. 91–103, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Sergeant, A. Bretteville, M. Hamdane et al., “Biochemistry of Tau in Alzheimer's disease and related neurological disorders,” Expert Review of Proteomics, vol. 5, no. 2, pp. 207–224, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Buée, L. Troquier, S. Burnouf et al., “From tau phosphorylation to tau aggregation: what about neuronal death?” Biochemical Society Transactions, vol. 38, no. 4, pp. 967–972, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Bilen, N. Liu, B. G. Burnett, R. N. Pittman, and N. M. Bonini, “MicroRNA pathways modulate polyglutamine-induced neurodegeneration,” Molecular Cell, vol. 24, no. 1, pp. 157–163, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. D. C. Carrettiero, I. Hernandez, P. Neveu, T. Papagiannakopoulos, and K. S. Kosik, “The cochaperone BAG2 sweeps paired helical filament-insoluble tau from the microtubule,” Journal of Neuroscience, vol. 29, no. 7, pp. 2151–2161, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. S. S. Hébert, A. S. Papadopoulou, P. Smith et al., “Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration,” Human Molecular Genetics, vol. 19, no. 20, pp. 3959–3969, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Y. Smith, C. Delay, J. Girard et al., “MicroRNA-132 loss is associated with tau exon 10 inclusion in progressive supranuclear palsy,” Human Molecular Genetics, vol. 20, no. 20, pp. 4016–4024, 2011. View at Publisher · View at Google Scholar
  27. D. P. Hanger and W. Noble, “Functional implications of glycogen synthase kinase-3-mediated tau phosphorylation,” International Journal of Alzheimer's Disease, vol. 2011, Article ID 352805, 11 pages, 2011. View at Publisher · View at Google Scholar
  28. A. Sultan, F. Nesslany, M. Violet et al., “Nuclear Tau, a key player in neuronal DNA protection,” Journal of Biological Chemistry, vol. 286, no. 6, pp. 4566–4575, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. R. A. Whittington, M. A. Papon, F. Chouinard, and E. Planel, “Hypothermia and Alzheimer's disease neuropathogenic pathways,” Current Alzheimer Research, vol. 7, no. 8, pp. 717–725, 2010.
  30. E. Planel, A. Bretteville, L. Liu et al., “Acceleration and persistence of neurofibrillary pathology in a mouse model of tauopathy following anesthesia,” The FASEB Journal, vol. 23, no. 8, pp. 2595–2604, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Okawa, K. Ishiguro, S. C. Fujita, and J. Avila, “Stress-induced hyperphosphorylation of tau in the mouse brain,” FEBS Letters, vol. 535, no. 1–3, pp. 183–189, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Yanagisawa, E. Planel, K. Ishiguro, and S. C. Fujita, “Starvation induces tau hyperphosphorylation in mouse brain: implications for Alzheimer's disease,” FEBS Letters, vol. 461, no. 3, pp. 329–333, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. W. Qian, H. Liang, J. Shi et al., “Regulation of the alternative splicing of tau exon 10 by SC35 and Dyrk1A,” Nucleic Acids Research, vol. 39, no. 14, pp. 6161–6171, 2011. View at Publisher · View at Google Scholar
  34. J. Shi, W. Qian, X. Yin et al., “Cyclic AMP-dependent protein kinase regulates the alternative splicing of tau exon 10: a mechanism involved in tau pathology of Alzheimer disease,” Journal of Biological Chemistry, vol. 286, no. 16, pp. 14639–14648, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. D. C. Glatz, D. Rujescu, Y. Tang et al., “The alternative splicing of tau exon 10 and its regulatory proteins CLK2 and TRA2-BETA1 changes in sporadic Alzheimer's disease,” Journal of Neurochemistry, vol. 96, no. 3, pp. 635–644, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. F. Hernández, M. Pérez, J. J. Lucas, A. M. Mata, R. Bhat, and J. Avila, “Glycogen synthase kinase-3 plays a crucial role in tau exon 10 splicing and intranuclear distribution of SC35: implications for Alzheimer's disease,” Journal of Biological Chemistry, vol. 279, no. 5, pp. 3801–3806, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. J. S. Mohamed, M. A. Lopez, and A. M. Boriek, “Mechanical stretch up-regulates microRNA-26a and induces human airway smooth muscle hypertrophy by suppressing glycogen synthase kinase-3β,” Journal of Biological Chemistry, vol. 285, no. 38, pp. 29336–29347, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. Z. Yang, S. Chen, X. Luan et al., “MicroRNA-214 is aberrantly expressed in cervical cancers and inhibits the growth of hela cells,” IUBMB Life, vol. 61, no. 11, pp. 1075–1082, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. I. Ferrer, R. Blanco, M. Carmona et al., “Phosphorylated map kinase (ERK1, ERK2) expression is associated with early tau deposition in neurones and glial cells, but not with increased nuclear DNA vulnerability and cell death, in Alzheimer disease, Pick's disease, progressive supranuclear palsy and corticobasal degeneration,” Brain Pathology, vol. 11, no. 2, pp. 144–158, 2001. View at Scopus
  40. K. Iqbal, C. Alonso Adel, E. El-Akkad et al., “Significance and mechanism of Alzheimer neurofibrillary degeneration and therapeutic targets to inhibit this lesion,” Journal of Molecular Neuroscience, vol. 19, no. 1-2, pp. 95–99, 2002. View at Scopus
  41. G. Perry, H. Roder, A. Nunomura et al., “Activation of neuronal extracellular receptor kinase (ERK) in Alzheimer disease links oxidative stress to abnormal phosphorylation,” NeuroReport, vol. 10, no. 11, pp. 2411–2415, 1999. View at Scopus
  42. Y. Satoh, Y. Kobayashi, A. Takeuchi, G. Pagès, J. Pouysségur, and T. Kazama, “Deletion of ERK1 and ERK2 in the CNS causes cortical abnormalities and neonatal lethality: Erk1 deficiency enhances the impairment of neurogenesis in Erk2-deficient mice,” Journal of Neuroscience, vol. 31, no. 3, pp. 1149–1155, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Subramaniam and K. Unsicker, “ERK and cell death: ERK1/2 in neuronal death,” The FEBS Journal, vol. 277, no. 1, pp. 22–29, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. O. Natera-Naranjo, A. Aschrafi, A. E. Gioio, and B. B. Kaplan, “Identification and quantitative analyses of microRNAs located in the distal axons of sympathetic neurons,” RNA, vol. 16, no. 8, pp. 1516–1529, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. J. P. Cogswell, J. Ward, I. A. Taylor et al., “Identification of miRNA changes in Alzheimer's disease brain and CSF yields putative biomarkers and insights into disease pathways,” Journal of Alzheimer's Disease, vol. 14, no. 1, pp. 27–41, 2008. View at Scopus
  46. J. Nunez-Iglesias, C.-C. Liu, T. E. Morgan, C. E. Finch, and X. J. Zhou, “Joint genome-wide profiling of miRNA and mRNA expression in Alzheimer's disease cortex reveals altered miRNA regulation,” PloS One, vol. 5, no. 2, p. e8898, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Cimmino, G. A. Calin, M. Fabbri et al., “MiR-15 and miR-16 induce apoptosis by targeting BCL2,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 39, pp. 13944–13949, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. G. Lu, W. H. Kwong, Q. Li, X. Wang, Z. Feng, and D. T. Yew, “Bcl2, bax, and nestin in the brains of patients with neurodegeneration and those of normal aging,” Journal of Molecular Neuroscience, vol. 27, no. 2, pp. 167–174, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. K. L. Jordan-Sciutto, L. M. Malaiyandi, and R. Bowser, “Altered distribution of cell cycle transcriptional regulators during Alzheimer disease,” Journal of Neuropathology and Experimental Neurology, vol. 61, no. 4, pp. 358–367, 2002. View at Scopus
  50. W. Liu, C. Liu, J. Zhu et al., “MicroRNA-16 targets amyloid precursor protein to potentially modulate Alzheimer's-associated pathogenesis in SAMP8 mice,” Neurobiology of Aging, vol. 33, pp. 522–534, 2012. View at Publisher · View at Google Scholar · View at Scopus
  51. J. T. Zipprich, S. Bhattacharyya, H. Mathys, and W. Filipowicz, “Importance of the C-Terminal domain of the human GW182 protein TNRC6C for translational repression,” RNA, vol. 15, no. 5, pp. 781–793, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. P. Ray, A. Kar, K. Fushimi, N. Havlioglu, X. Chen, and J. Y. Wu, “PSF suppresses tau exon 10 inclusion by interacting with a stem-loop structure downstream of exon 10,” Journal of Molecular Neuroscience, vol. 45, no. 3, pp. 453–466, 2011. View at Publisher · View at Google Scholar
  53. C. F. Sephton, C. Cenik, A. Kucukural et al., “Identification of neuronal RNA targets of TDP-43-containing ribonucleoprotein complexes,” Journal of Biological Chemistry, vol. 286, no. 2, pp. 1204–1215, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. M. L. Wei, J. Memmott, G. Screaton, and A. Andreadis, “The splicing determinants of a regulated exon in the axonal MAP tau reside within the exon and in its upstream intron,” Molecular Brain Research, vol. 80, no. 2, pp. 207–218, 2000. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Wang, Q. S. Gao, Y. Wang, R. Lafyatis, S. Stamm, and A. Andreadis, “Tau exon 10, whose missplicing causes frontotemporal dementia, is regulated by an intricate interplay of cis elements and trans factors,” Journal of Neurochemistry, vol. 88, no. 5, pp. 1078–1090, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. S. S. Hébert, K. Horré, L. Nicolaï et al., “Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer's disease correlates with increased BACE1/β-secretase expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 17, pp. 6415–6420, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. P. Smith, A. Al Hashimi, J. Girard, C. Delay, and S. S. Hébert, “In vivo regulation of amyloid precursor protein neuronal splicing by microRNAs,” Journal of Neurochemistry, vol. 116, no. 2, pp. 240–247, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. W. J. Lukiw, “Micro-RNA speciation in fetal, adult and Alzheimer's disease hippocampus,” Neuroreport, vol. 18, no. 3, pp. 297–300, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. N. Schonrock, Y. D. Ke, D. Humphreys et al., “Neuronal microRNA deregulation in response to Alzheimer's disease amyloid-β,” PloS one, vol. 5, no. 6, p. e11070, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. K. Yasojima, E. G. McGeer, and P. L. McGeer, “Tangled areas of Alzheimer brain have upregulated levels of exon 10 containing tau mRNA,” Brain Research, vol. 831, no. 1-2, pp. 301–305, 1999. View at Publisher · View at Google Scholar · View at Scopus
  61. T. M. Caffrey, C. Joachim, S. Paracchini, M. M. Esiri, and R. Wade-Martins, “Haplotype-specific expression of exon 10 at the human MAPT locus,” Human Molecular Genetics, vol. 15, no. 24, pp. 3529–3537, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. J. C. Steele, J. C. Richardson, and J. Olszewski, “Progressive supranuclear palsy. A heterogeneous degeneration involving the brain stem, basal ganglia and cerebellum with vertical gaze and pseudobulbar palsy, nuchal dystonia and dementia,” Archives of Neurology, vol. 10, pp. 333–359, 1964. View at Scopus
  63. J. R. Tollervey, Z. Wang, T. Hortobágyi et al., “Analysis of alternative splicing associated with aging and neurodegeneration in the human brain,” Genome Research, vol. 21, no. 10, pp. 1572–1582, 2011. View at Publisher · View at Google Scholar
  64. T. Sterne-Weiler, J. Howard, M. Mort, D. N. Cooper, and J. R. Sanford, “Loss of exon identity is a common mechanism of human inherited disease,” Genome Research, vol. 21, no. 10, pp. 1563–1571, 2011. View at Publisher · View at Google Scholar