About this Journal Submit a Manuscript Table of Contents
International Journal of Alzheimer’s Disease
Volume 2012 (2012), Article ID 493670, 8 pages
http://dx.doi.org/10.1155/2012/493670
Research Article

Tau and Caspase 3 as Targets for Neuroprotection

The Adams Super Center for Brain Studies, The Lily and Avraham Gildor Chair for The Investigation of Growth Factors, The Elton Laboratory for Molecular Neuroendocrinology, and Department of Human Molecular Genetics and Biochemistry, Sagol School of Neuroscience, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel

Received 27 February 2012; Accepted 1 April 2012

Academic Editor: Hanna Rosenmann

Copyright © 2012 Anat Idan-Feldman et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Bassan, R. Zamostiano, A. Davidson et al., “Complete sequence of a novel protein containing a femtomolar-activity- dependent neuroprotective peptide,” Journal of Neurochemistry, vol. 72, no. 3, pp. 1283–1293, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. I. Gozes, B. H. Morimoto, J. Tiong et al., “NAP: research and development of a peptide derived from activity-dependent neuroprotective protein (ADNP),” CNS Drug Reviews, vol. 11, no. 4, pp. 353–368, 2005. View at Scopus
  3. N. Shiryaev, R. Pikman, E. Giladi, and I. Gozes, “Protection against tauopathy by the drug candidates NAP (Davunetide) and D-SAL: biochemical, cellular and behavioral aspects,” Current Pharmaceutical Design, vol. 17, no. 25, pp. 2603–2612, 2011.
  4. I. Vulih-Shultzman, A. Pinhasov, S. Mandel et al., “Activity-dependent neuroprotective protein snippet NAP reduces tau hyperphosphorylation and enhances learning in a novel transgenic mouse model,” Journal of Pharmacology and Experimental Therapeutics, vol. 323, no. 2, pp. 438–449, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Shiryaev, Y. Jouroukhin, E. Giladi et al., “NAP protects memory, increases soluble tau and reduces tau hyperphosphorylation in a tauopathy model,” Neurobiology of Disease, vol. 34, no. 2, pp. 381–388, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. R. R. Leker, A. Teichner, N. Grigoriadis et al., “NAP, a femtomolar-acting peptide, protects the brain against ischemic injury by reducing apoptotic death,” Stroke, vol. 33, no. 4, pp. 1085–1092, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. A Idan-Feldman, Y. Schirer, E. Polyzoidou et al., “Davunetide (NAP) as a preventative treatment for central nervous system complications in a diabetes rat model,” Neurobiology of Disease, vol. 44, no. 3, pp. 327–339, 2011. View at Publisher · View at Google Scholar
  8. I. Grundke-Iqbal, K. Iqbal, and Y. C. Tung, “Abnormal phosphorylation of the microtubule-associated protein τ (tau) in Alzheimer cytoskeletal pathology,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 13, pp. 44913–4917, 1986. View at Scopus
  9. V. M. Y. Lee, M. Goedert, and J. Q. Trojanowski, “Neurodegenerative tauopathies,” Annual Review of Neuroscience, vol. 24, pp. 1121–1159, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Iqbal, I. Grundke-Iqbal, and T. Zaidi, “Defective brain microtubule assembly in Alzheimer's disease,” The Lancet, vol. 2, no. 8504, pp. 421–426, 1986. View at Scopus
  11. A. Ebneth, R. Godemann, K. Stamer et al., “Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer's disease,” Journal of Cell Biology, vol. 143, no. 3, pp. 777–794, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Terwel, I. Dewachter, and F. Van Leuven, “Axonal transport, tau protein, and neurodegeneration in Alzheimer's disease,” NeuroMolecular Medicine, vol. 2, no. 2, pp. 151–165, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. D. N. Drechsel, A. A. Hyman, M. H. Cobb, and M. W. Kirschner, “Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau,” Molecular Biology of the Cell, vol. 3, no. 10, pp. 1141–1154, 1992. View at Scopus
  14. G. T. Bramblett, M. Goedert, R. Jakes, S. E. Merrick, J. Q. Trojanowski, and V. M. Y. Lee -, “Abnormal tau phosphorylation at Ser396 in Alzheimer's disease recapitulates development and contributes to reduced microtubule binding,” Neuron, vol. 10, no. 6, pp. 1089–1099, 1993. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Biernat, N. Gustke, G. Drewes, E. M. Mandelkow, and E. Mandelkow, “Phosphorylation of Ser262 strongly reduces binding of tau to microtubules: distinction between PHF-like immunoreactivity and microtubule binding,” Neuron, vol. 11, no. 1, pp. 153–163, 1993. View at Publisher · View at Google Scholar · View at Scopus
  16. A. D. C. Alonso, T. Zaidi, M. Novak, I. Grundke-Iqbal, and K. Iqbal, “Hyperphosphorylation induces self-assembly of τ into tangles of paired helical filaments/straight filaments,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 12, pp. 6923–6928, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. A. D. C. Alonso, T. Zaidi, I. Grundke-Iqbal, and K. Iqbal, “Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 12, pp. 5562–5566, 1994. View at Publisher · View at Google Scholar · View at Scopus
  18. Alejandra del C. Alonso, I. Grundke-Iqbal, and K. Iqbal, “Alzheimer's disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules,” Nature Medicine, vol. 2, no. 7, pp. 783–787, 1996. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Goedert and M. G. Spillantini, “Pathogenesis of the Tauopathies,” Journal of Molecular Neuroscience, vol. 45, pp. 425–431, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. A. L. Guillozet, S. Weintraub, D. C. Mash, and M. Marsel Mesulam, “Neurofibrillary tangles, amyloid, and memory in aging and mild cognitive impairment,” Archives of Neurology, vol. 60, no. 5, pp. 729–736, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. P. V. Arriagada, J. H. Growdon, E. T. Hedley-Whyte, and B. T. Hyman, “Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease,” Neurology, vol. 42, no. 3 I, pp. 631–639, 1992. View at Scopus
  22. H. Braak and E. Braak, “Evolution of the neuropathology of Alzheimer's disease,” Acta Neurologica Scandinavica, vol. 93, no. 165, pp. 3–12, 1996. View at Scopus
  23. H. Lassmann, C. Bancher, H. Breitschopf et al., “Cell death in Alzheimer's disease evaluated by DNA fragmentation in situ,” Acta Neuropathologica, vol. 89, no. 1, pp. 35–41, 1995. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Bancher, H. Lassmann, and H. Budka, “Neurofibrillary tangles in Alzheimer's disease and progressive supranuclear palsy: antigenic similarities and differences. Microtubule-associated protein tau antigenicity is prominent in all types of tangles,” Acta Neuropathologica, vol. 74, no. 1, pp. 39–46, 1987. View at Scopus
  25. M. Goedert, F. Clavaguera, and M. Tolnay, “The propagation of prion-like protein inclusions in neurodegenerative diseases,” Trends in Neurosciences, vol. 33, no. 7, pp. 317–325, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Liu, V. Drouet, J. W. Wu et al., “Trans-synaptic spread of tau pathology in vivo,” PLoS ONE, vol. 7, no. 2, Article ID e31302, 2012. View at Publisher · View at Google Scholar
  27. K. Santacruz, J. Lewis, T. Spires et al., “Medicine: tau suppression in a neurodegenerative mouse model improves memory function,” Science, vol. 309, no. 5733, pp. 476–481, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Oddo, V. Vasilevko, A. Caccamo, M. Kitazawa, D. H. Cribbs, and F. M. LaFerla, “Reduction of soluble Aβ and tau, but not soluble Aβ alone, ameliorates cognitive decline in transgenic mice with plaques and tangles,” Journal of Biological Chemistry, vol. 281, no. 51, pp. 39413–39423, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. Z. Berger, H. Roder, A. Hanna et al., “Accumulation of pathological tau species and memory loss in a conditional model of tauopathy,” Journal of Neuroscience, vol. 27, no. 14, pp. 3650–3662, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. C. W. Cotman, W. W. Poon, R. A. Rissman, and M. Blurton-Jones, “The role of caspase cleavage of tau in Alzheimer disease neuropathology,” Journal of Neuropathology and Experimental Neurology, vol. 64, no. 2, pp. 104–112, 2005. View at Scopus
  31. T. C. Gamblin, F. Chen, A. Zambrano et al., “Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 17, pp. 10032–10037, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. R. A. Rissman, W. W. Poon, M. Blurton-Jones et al., “Caspase-cleavage of tau is an early event in Alzheimer disease tangle pathology,” Journal of Clinical Investigation, vol. 114, no. 1, pp. 121–130, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. A. De Calignon, L. M. Fox, R. Pitstick et al., “Caspase activation precedes and leads to tangles,” Nature, vol. 464, no. 7292, pp. 1201–1204, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. C.-W. Chung, Y.-H. Song, I.-K. Kim et al., “Proapoptotic effects of Tau cleavage product generated by caspase-3,” Neurobiology of Disease, vol. 8, no. 1, pp. 162–172, 2001. View at Publisher · View at Google Scholar
  35. S. Guise, D. Braguer, G. Carles, A. Delacourte, and C. Briand, “Hyperphosphorylation of tau is mediated by erk activation during anticancer drug-induced apoptosis in neuroblastoma cells,” Journal of Neuroscience Research, vol. 63, no. 3, pp. 257–267, 2001. View at Publisher · View at Google Scholar
  36. A. Rametti, F. Esclaire, C. Yardin, and F. Terro, “Linking alterations in tau phosphorylation and cleavage during neuronal apoptosis,” Journal of Biological Chemistry, vol. 279, no. 52, pp. 54518–54528, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. T. T. Rohn and E. Head, “Caspases as therapeutic targets in Alzheimer's disease: is it time to “Cut" to the chase?” International Journal of Clinical and Experimental Pathology, vol. 2, no. 2, pp. 108–118, 2009. View at Scopus
  38. T. T. Rohn, P. Kokoulina, C. R. Eaton, and W. W. Poon, “Caspase activation in transgenic mice with Alzheimer-like pathology: results from a pilot study utilizing the caspase inhibitor, Q-VD-OPh,” International Journal of Clinical and Experimental Medicine, vol. 2, no. 4, pp. 300–308, 2009. View at Scopus
  39. I. Zemlyak, R. Sapolsky, and I. Gozes, “NAP protects against cytochrome c release: inhibition of the initiation of apoptosis,” European Journal of Pharmacology, vol. 618, no. 1-3, pp. 9–14, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. Z. H. Zhang, X. B. Fang, G. M. Xi, W. C. Li, H. Y. Ling, and P. Qu, “Calcitonin gene-related peptide enhances CREB phosphorylation and attenuates tau protein phosphorylation in rat brain during focal cerebral ischemia/reperfusion,” Biomedicine and Pharmacotherapy, vol. 64, no. 6, pp. 430–436, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. H. Wang, H. Zhao, Y. Ye et al., “Focal cerebral ischemia induces Alzheimer's disease-like pathological change in rats,” Journal of Huazhong University of Science and Technology, vol. 30, no. 1, pp. 29–36, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. Z. H. Zhang, G. M. Xi, W. C. Li, H. Y. Ling, P. Qu, and X. B. Fang, “Cyclic-AMP response element binding protein and tau are involved in the neuroprotective mechanisms of nerve growth factor during focal cerebral ischemia/reperfusion in rats,” Journal of Clinical Neuroscience, vol. 17, no. 3, pp. 353–356, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. D. Chauvier, S. Ankri, C. Charriaut-Marlangue, R. Casimir, and E. Jacotot, “Broad-spectrum caspase inhibitors: from myth to reality?” Cell Death and Differentiation, vol. 14, no. 2, pp. 387–391, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Mandel and I. Gozes, “Activity-dependent neuroprotective protein constitutes a novel element in the SWI/SNF chromatin remodeling complex,” Journal of Biological Chemistry, vol. 282, no. 47, pp. 34448–34456, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. Matsuoka, A. J. Gray, C. Hirata-Fukae et al., “Intranasal NAP administration reduces accumulation of amyloid peptide and tau hyperphosphorylation in a transgenic mouse model of Alzheimer's disease at early pathological stage,” Journal of Molecular Neuroscience, vol. 31, no. 2, pp. 165–170, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. Y. Matsuoka, Y. Jouroukhin, A. J. Gray et al., “A neuronal microtubule-interacting agent, NAPVSIPQ, reduces tau pathology and enhances cognitive function in a mouse model of Alzheimer's disease,” Journal of Pharmacology and Experimental Therapeutics, vol. 325, no. 1, pp. 146–153, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. I. Gozes and I. Divinski, “The femtomolar-acting NAP interacts with microtubules: novel aspects of astrocyte protection,” Journal of Alzheimer's Disease, vol. 6, pp. S37–S41, 2004. View at Scopus
  48. P. Sokolowska, S. Passemard, A. Mok, L. Schwendimann, I. Gozes, and P. Gressens, “Neuroprotective effects of NAP against excitotoxic brain damage in the newborn mice: implications for cerebral palsy,” Neuroscience, vol. 173, pp. 156–168, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. I. Zemlyak, N. Manley, I. Vulih-Shultzman et al., “The microtubule interacting drug candidate NAP protects against kainic acid toxicity in a rat model of epilepsy,” Journal of Neurochemistry, vol. 111, no. 5, pp. 1252–1263, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. I. Gozes, R. A. Steingart, and A. D. Spier, “NAP mechanisms of neuroprotection,” Journal of Molecular Neuroscience, vol. 24, no. 1, pp. 67–72, 2004. View at Scopus
  51. Y. Sari, “Activity-dependent neuroprotective protein-derived peptide, NAP, preventing alcohol-induced apoptosis in fetal brain of C57BL/6 mouse,” Neuroscience, vol. 158, no. 4, pp. 1426–1435, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. I. Zemlyak, N. Manley, R. Sapolsky, and L. Gozes, “NAP protects hippocampal neurons against multiple toxins,” Peptides, vol. 28, no. 10, pp. 2004–2008, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Pascual and C. Guerri, “The peptide NAP promotes neuronal growth and differentiation through extracellular signal-regulated protein kinase and Akt pathways, and protects neurons co-cultured with astrocytes damaged by ethanol,” Journal of Neurochemistry, vol. 103, no. 2, pp. 557–568, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. L. L. Dugan, V. M. G. Bruno, S. M. Amagasu, and R. G. Giffard, “Glia modulate the response of murine cortical neurons to excitotoxicity: glia exacerbate AMPA neurotoxicity,” Journal of Neuroscience, vol. 15, no. 6, pp. 4545–4555, 1995. View at Scopus
  55. I. Zemlyak, S. Furman, D. E. Brenneman, and I. Gozes, “A Novel peptide prevents death in enriched neuronal cultures,” Regulatory Peptides, vol. 96, no. 1-2, pp. 39–43, 2000. View at Publisher · View at Google Scholar · View at Scopus
  56. R. Zaltzman, A. Alexandrovich, S. M. Beni, V. Trembovler, E. Shohami, and I. Gozes, “Brain injury-dependent expression of activity-dependent neuroprotective protein,” Journal of Molecular Neuroscience, vol. 24, no. 2, pp. 181–187, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. R. Fernandez-Montesinos, M. Torres, D. Baglietto-Vargas et al., “Activity-dependent neuroprotective protein (ADNP) expression in the amyloid precursor protein/presenilin 1 mouse model of Alzheimer's disease,” Journal of Molecular Neuroscience, vol. 41, no. 1, pp. 114–120, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. I. Gozes, R. Zaltzman, J. Hauser, D. E. Brenneman, E. Shohami, and J. M. Hill, “The expression of activity-dependent neuroprotective protein (ADNP) is regulated by brain damage and treatment of mice with the ADNP derived peptide, NAP, reduces the severity of traumatic head injury,” Current Alzheimer Research, vol. 2, no. 2, pp. 149–153, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Furman, R. A. Steingart, S. Mandel, et al., “Subcellular localization and secretion of activity-dependent neuroprotective protein in astrocytes,” Neuron Glia Biology, vol. 1, pp. 193–199, 2004.
  60. R. A. Steingart and I. Gozes, “Recombinant activity-dependent neuroprotective protein protects cells against oxidative stress,” Molecular and Cellular Endocrinology, vol. 252, no. 1-2, pp. 148–153, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. V. L. Smith-Swintosky, I. Gozes, D. E. Brenneman, M. R. D'Andrea, and C. R. Plata-Salaman, “Activity-dependent neurotrophic factor-9 and NAP promote neurite outgrowth in rat hippocampal and cortical cultures,” Journal of Molecular Neuroscience, vol. 25, no. 3, pp. 225–237, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. W. A. Lagrèze, A. Pielen, R. Steingart et al., “The peptides ADNF-9 and NAP increase survival and neurite outgrowth of rat retinal ganglion cells in vitro,” Investigative Ophthalmology and Visual Science, vol. 46, no. 3, pp. 933–938, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. I. Gozes and I. Divinski, “NAP, a neuroprotective drug candidate in clinical trials, stimulates microtubule assembly in the living cell,” Current Alzheimer Research, vol. 4, no. 5, pp. 507–509, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. I. Divinski, L. Mittelman, and I. Gozes, “A femtomolar acting octapeptide interacts with tubulin and protects astrocytes against zinc intoxication,” Journal of Biological Chemistry, vol. 279, no. 27, pp. 28531–28538, 2004. View at Publisher · View at Google Scholar · View at Scopus