About this Journal Submit a Manuscript Table of Contents
International Journal of Alzheimer’s Disease
Volume 2012 (2012), Article ID 509529, 3 pages
http://dx.doi.org/10.1155/2012/509529
Review Article

The Effects of SIRT1 on Alzheimer's Disease Models

Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA

Received 2 July 2012; Accepted 20 November 2012

Academic Editor: Francesco Panza

Copyright © 2012 Gizem Donmez. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Donmez, “The neurobiology of sirtuins and their role in neurodegeneration,” Trends in Pharmacological Sciences, vol. 33, no. 9, pp. 494–501, 2012.
  2. D. Selkoe, “Images in Neuroscience. Alzheimer's disease: from genes to pathogenesis,” American Journal of Psychiatry, vol. 154, no. 9, p. 1198, 1997.
  3. L. Bertram and R. E. Tanzi, “The genetic epidemiology of neurodegenerative disease,” Journal of Clinical Investigation, vol. 115, no. 6, pp. 1449–1457, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. B. De Strooper, “Loss-of-function presenilin mutations in Alzheimer disease. Talking Point on the role of presenilin mutations in Alzheimer disease,” EMBO Reports, vol. 8, no. 2, pp. 141–146, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Postina, A. Schroeder, I. Dewachter et al., “A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alheizmer disease mouse model,” Journal of Clinical Investigation, vol. 113, no. 10, pp. 1456–1464, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. M. P. Mattson, “Cellular actions of β-amyloid precursor protein and its soluble and fibrillogenic derivatives,” Physiological Reviews, vol. 77, no. 4, pp. 1081–1132, 1997. View at Scopus
  7. E. Kojro and F. Fahrenholz, “The non-amyloidogenic pathway: structure and function of alpha-secretases,” Sub-Cellular Biochemistry, vol. 38, pp. 105–127, 2005. View at Scopus
  8. J. L. Jankowsky, D. J. Fadale, J. Anderson et al., “Mutant presenilins specifically elevate the levels of the 42 residue β-amyloid peptide in vivo: evidence for augmentation of a 42-specific γ secretase,” Human Molecular Genetics, vol. 13, no. 2, pp. 159–170, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Malm, J. Koistinaho, and K. Kanninen, “Utilization of APPswe/PS1dE9 transgenic mice in research of Alzheimer's disease: focus on gene therapy and cell-based therapy applications,” International Journal of Alzheimer's Disease, vol. 2011, Article ID 517160, 2011.
  10. G. Donmez, D. Wang, D. E. Cohen, and L. Guarente, “SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10,” Cell, vol. 23, no. 142, pp. 320–332, 2010.
  11. W. Qin, M. Chachich, M. Lane, et al., “Calorie restriction attenuates Alzheimer’s disease type brain amyloidosis in Squirrel monkeys (Saimiri sciureus),” Journal of Alzheimer's Disease, vol. 10, pp. 417–422, 2006.
  12. J. Chen, Y. Zhou, S. Mueller-Steiner et al., “SIRT1 protects against microglia-dependent amyloid-β toxicity through inhibiting NF-κB signaling,” Journal of Biological Chemistry, vol. 280, no. 48, pp. 40364–40374, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Julien, C. Tremblay, V. Émond et al., “Sirtuin 1 reduction parallels the accumulation of tau in alzheimer disease,” Journal of Neuropathology and Experimental Neurology, vol. 68, no. 1, pp. 48–58, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. S. W. Min, S. H. Cho, Y. Zhou et al., “Acetylation of tau inhibits its degradation and contributes to tauopathy,” Neuron, vol. 67, no. 6, pp. 953–966, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Yoshiyama, M. Higuchi, B. Zhang et al., “Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model,” Neuron, vol. 53, no. 3, pp. 337–351, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. P. McMillan, E. Korvatska, P. Poorkaj et al., “Tau isoform regulation is region- and cell-specific in mouse brain,” Journal of Comparative Neurology, vol. 511, no. 6, pp. 788–803, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. J. C. Cruz, H. C. Tseng, J. A. Goldman, H. Shih, and L. H. Tsai, “Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles,” Neuron, vol. 40, no. 3, pp. 471–483, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Kim, M. D. Nguyen, M. M. Dobbin et al., “SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis,” EMBO Journal, vol. 26, no. 13, pp. 3169–3179, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Helisalmi, S. Vepsäläinen, M. Hiltunen et al., “Genetic study between SIRT1, PPARD, PGC-1α genes and Alzheimer's disease,” Journal of Neurology, vol. 255, no. 5, pp. 668–673, 2008. View at Publisher · View at Google Scholar · View at Scopus