About this Journal Submit a Manuscript Table of Contents
International Journal of Alzheimer’s Disease
Volume 2012 (2012), Article ID 604141, 10 pages
http://dx.doi.org/10.1155/2012/604141
Research Article

Reliable Measurements of the β-Amyloid Pool in Blood Could Help in the Early Diagnosis of AD

1Araclon Biotech Ltd., I + D Laboratory, Zaragoza, Spain
2Araclon Biotech Ltd., Proteomic Laboratory, CIBIR Logroño, Spain
3Alzheimer Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurciències Aplicades, Barcelona, Spain

Received 13 December 2011; Revised 7 May 2012; Accepted 9 May 2012

Academic Editor: Seishi Terada

Copyright © 2012 Pedro Pesini et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. T. Nelson, H. Braak, and W. R. Markesbery, “Neuropathology and cognitive impairment in alzheimer disease: a complex but coherent relationship,” Journal of Neuropathology and Experimental Neurology, vol. 68, no. 1, pp. 1–14, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. L. M. Shaw, H. Vanderstichele, M. Knapik-Czajka et al., “Cerebrospinal fluid biomarker signature in alzheimer's disease neuroimaging initiative subjects,” Annals of Neurology, vol. 65, no. 4, pp. 403–413, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. O. Hansson, H. Zetterberg, P. Buchhave et al., “Prediction of Alzheimer's disease using the CSF Aβ42/Aβ40 ratio in patients with mild cognitive impairment,” Dementia and Geriatric Cognitive Disorders, vol. 23, no. 5, pp. 316–320, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Lewczuk, J. Kornhuber, H. Vanderstichele et al., “Multiplexed quantification of dementia biomarkers in the CSF of patients with early dementias and MCI: a multicenter study,” Neurobiology of Aging, vol. 29, no. 6, pp. 812–818, 2008. View at Publisher · View at Google Scholar
  5. N. Mattsson, H. Zetterberg, O. Hansson et al., “CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment,” Journal of the American Medical Association, vol. 302, no. 4, pp. 385–393, 2009. View at Publisher · View at Google Scholar
  6. O. Hansson, H. Zetterberg, E. Vanmechelen et al., “Evaluation of plasma Aβ40 and Aβ42 as predictors of conversion to Alzheimer's disease in patients with mild cognitive impairment,” Neurobiology of Aging, vol. 31, no. 3, pp. 357–367, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Shibata, S. Yamada, S. Ram Kumar et al., “Clearance of Alzheimer's amyloid-β1-40 peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier,” Journal of Clinical Investigation, vol. 106, no. 12, pp. 1489–1499, 2000. View at Scopus
  8. R. E. Tanzi, R. D. Moir, and S. L. Wagner, “Clearance of Alzheimer's Aβ peptide: the many roads to perdition,” Neuron, vol. 43, no. 5, pp. 605–608, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Deane, R. D. Bell, A. Sagare, and B. V. Zlokovic, “Clearance of amyloid-β peptide across the blood-brain barrier: implication for therapies in Alzheimer's disease,” CNS and Neurological Disorders, vol. 8, no. 1, pp. 16–30, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Zetterberg, “Is plasma amyloid-β a reliable biomarker for Alzheimer's disease?” Recent Patents on CNS Drug Discovery, vol. 3, no. 2, pp. 109–111, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. O. I. Okereke, W. Xia, M. C. Irizarry et al., “Performance characteristics of plasma amyloid-β 40 and 42 assays,” Journal of Alzheimer's Disease, vol. 16, no. 2, pp. 277–285, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Cedazo-Minguez and B. Winblad, “Biomarkers for Alzheimer's disease and other forms of dementia: clinical needs, limitations and future aspects,” Experimental Gerontology, vol. 45, no. 1, pp. 5–14, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. N. Schupf, B. Patel, D. Pang et al., “Elevated plasma β-amyloid peptide Aβ42 levels, incident dementia, and mortality in Down syndrome,” Archives of Neurology, vol. 64, no. 7, pp. 1007–1013, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Scheuner, C. Eckman, M. Jensen et al., “Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease,” Nature Medicine, vol. 2, no. 8, pp. 864–870, 1996. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Assini, S. Cammarata, A. Vitali et al., “Plasma levels of amyloid β-protein 42 are increased in women with mild cognitive impairment,” Neurology, vol. 63, no. 5, pp. 828–831, 2004. View at Scopus
  16. R. Mayeux, L. S. Honig, M. X. Tang et al., “Plasma Aβ40 and Aβ42 and Alzheimer's disease: relation to age, mortality, and risk,” Neurology, vol. 61, no. 9, pp. 1185–1190, 2003. View at Scopus
  17. N. Ertekin-Taner, L. H. Younkin, D. M. Yager et al., “Plasma amyloid β protein is elevated in late-onset Alzheimer disease families,” Neurology, vol. 70, no. 8, pp. 596–606, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. I. Blasko, K. Jellinger, G. Kemmler et al., “Conversion from cognitive health to mild cognitive impairment and Alzheimer's disease: prediction by plasma amyloid beta 42, medial temporal lobe atrophy and homocysteine,” Neurobiology of Aging, vol. 29, no. 1, pp. 1–11, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Schupf, M. X. Tang, H. Fukuyama et al., “Peripheral Aβ subspecies as risk biomarkers of Alzheimer's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 37, pp. 14052–14057, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. W. Xia, T. Yang, G. Shankar et al., “A specific enzyme-linked immunosorbent assay for measuring β-amyloid protein oligomers in human plasma and brain tissue of patients with Alzheimer Disease,” Archives of Neurology, vol. 66, no. 2, pp. 190–199, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Sobów, M. Flirski, I. Kloszewska, and P. P. Liberski, “Plasma levels of Aβ peptides are altered in amnestic mild cognitive impairment but not in sporadic Alzheimer's disease,” Acta Neurobiologiae Experimentalis, vol. 65, no. 2, pp. 117–124, 2005. View at Scopus
  22. T. Kawarabayashi, L. H. Younkin, T. C. Saido, M. Shoji, K. H. Ashe, and S. G. Younkin, “Age-dependent changes in brain, CSF, and plasma amyloid β protein in the Tg2576 transgenic mouse model of Alzheimer's disease,” Journal of Neuroscience, vol. 21, no. 2, pp. 372–381, 2001. View at Scopus
  23. A. L. Biere, B. Ostaszewski, E. R. Stimson, B. T. Hyman, J. E. Maggio, and D. J. Selkoe, “Amyloid β-peptide is transported on lipoproteins and albumin in human plasma,” Journal of Biological Chemistry, vol. 271, no. 51, pp. 32916–32922, 1996. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Rogers, R. Li, D. Mastroeni et al., “Peripheral clearance of amyloid β peptide by complement C3-dependent adherence to erythrocytes,” Neurobiology of Aging, vol. 27, no. 12, pp. 1733–1739, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Matsubara, Y. Sekijima, T. Tokuda et al., “Soluble Aβ homeostasis in AD and DS: impairment of anti-amyloidogenic protection by lipoproteins,” Neurobiology of Aging, vol. 25, no. 7, pp. 833–841, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Blennow, H. Hampel, M. Weiner, and H. Zetterberg, “Cerebrospinal fluid and plasma biomarkers in Alzheimer disease,” Nature Reviews Neurology, vol. 6, no. 3, pp. 131–144, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. P. Scheltens, D. Leys, F. Barkhof et al., “Atrophy of medial temporal lobes on MRI in 'probable' Alzheimer's disease and normal ageing: diagnostic value and neuropsychological correlates,” Journal of Neurology Neurosurgery and Psychiatry, vol. 55, no. 10, pp. 967–972, 1992. View at Scopus
  28. M. Alegret, M. Boada-Rovira, G. Vinyes-Junqué et al., “Detection of visuoperceptual deficits in preclinical and mild Alzheimer's disease,” Journal of Clinical and Experimental Neuropsychology, vol. 31, no. 7, pp. 860–867, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. J. E. Hixson and D. T. Vernier, “Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI,” Journal of Lipid Research, vol. 31, no. 3, pp. 545–548, 1990. View at Scopus
  30. H. X. Barnhart, M. Haber, and J. Song, “Overall concordance correlation coefficient for evaluating agreement among multiple observers,” Biometrics, vol. 58, no. 4, pp. 1020–1027, 2002. View at Scopus
  31. Y. M. Kuo, M. R. Emmerling, H. C. Lampert et al., “High levels of circulating Aβ42 are sequestered by plasma proteins in Alzheimer's disease,” Biochemical and Biophysical Research Communications, vol. 257, no. 3, pp. 787–791, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. P. D. Mehta, T. Pirttilä, S. P. Mehta, E. A. Sersen, P. S. Aisen, and H. M. Wisniewski, “Plasma and cerebrospinal fluid levels of amyloid β proteins 1-40 and 1- 42 in Alzheimer disease,” Archives of Neurology, vol. 57, no. 1, pp. 100–105, 2000. View at Scopus
  33. R. C. Petersen, P. S. Aisen, L. A. Beckett et al., “Alzheimer's disease neuroimaging initiative (ADNI): clinical characterization,” Neurology, vol. 74, no. 3, pp. 201–209, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. N. Sureshbabu, R. Kirubagaran, and R. Jayakumar, “Surfactant-induced conformational transition of amyloid β-peptide,” European Biophysics Journal, vol. 38, no. 4, pp. 355–367, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Vemuri, H. J. Wiste, S. D. Weigand et al., “MRI and CSF biomarkers in normal, MCI, and AD subjects: predicting future clinical change,” Neurology, vol. 73, no. 4, pp. 294–301, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. O. L. Lopez, L. H. Kuller, P. D. Mehta et al., “Plasma amyloid levels and the risk of AD in normal subjects in the Cardiovascular Health Study,” Neurology, vol. 70, no. 19, pp. 1664–1671, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Szabo, N. Relkin, and M. E. Weksler, “Natural human antibodies to amyloid beta peptide,” Autoimmunity Reviews, vol. 7, no. 6, pp. 415–420, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. M. van Oijen, A. Hofman, H. D. Soares, P. J. Koudstaal, and M. M. Breteler, “Plasma Aβ1-40 and Aβ1-42 and the risk of dementia: a prospective case-cohort study,” Lancet Neurology, vol. 5, no. 8, pp. 655–660, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. C. R. Jack Jr, V. J. Lowe, S. D. Weigand et al., “Serial PIB and MRI in normal, mild cognitive impairment and Alzheimers disease: implications for sequence of pathological events in Alzheimers disease,” Brain, vol. 132, no. 5, pp. 1355–1365, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. V. Giedraitis, J. Sundelöf, M. C. Irizarry et al., “The normal equilibrium between CSF and plasma amyloid beta levels is disrupted in Alzheimer's disease,” Neuroscience Letters, vol. 427, no. 3, pp. 127–131, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. B. V. Zlokovic, “Neurovascular mechanisms of Alzheimer's neurodegeneration,” Trends in Neurosciences, vol. 28, no. 4, pp. 202–208, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. A. M. Fagan, D. Head, A. R. Shah et al., “Decreased cerebrospinal fluid Aβ42 correlates with brain atrophy in cognitively normal elderly,” Annals of Neurology, vol. 65, no. 2, pp. 176–183, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. P. Vemuri, H. J. Wiste, S. D. Weigand et al., “MRI and CSF biomarkers in normal, MCI, and AD subjects: diagnostic discrimination and cognitive correlations,” Neurology, vol. 73, no. 4, pp. 287–293, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. G. B. Frisoni, N. C. Fox, C. R. Jack Jr, P. Scheltens, and P. M. Thompson, “The clinical use of structural MRI in Alzheimer disease,” Nature Reviews Neurology, vol. 6, no. 2, pp. 67–77, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. W. J. Jagust, S. M. Landau, L. M. Shaw et al., “Relationships between biomarkers in aging and dementia,” Neurology, vol. 73, no. 15, pp. 1193–1199, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. H. Hampel, K. Bürger, S. J. Teipel, A. L. W. Bokde, H. Zetterberg, and K. Blennow, “Core candidate neurochemical and imaging biomarkers of Alzheimer's disease**This paper was presented in part by the 1st author at the 10th International Conference of Alzheimer's Disease and Related Disorders (ICAD), Madrid, Spain, July 2006, as an invited plenary lecture,” Alzheimer's and Dementia, vol. 4, no. 1, pp. 38–48, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. N. R. Graff-Radford, J. E. Crook, J. Lucas et al., “Association of low plasma Aβ42/Aβ40 ratios with increased imminent risk for mild cognitive impairment and Alzheimer disease,” Archives of Neurology, vol. 64, no. 3, pp. 354–362, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. S. H. Freeman, S. Raju, B. T. Hyman, M. P. Frosch, and M. C. Irizarry, “Plasma Aβ levels do not reflect brain Aβ levels,” Journal of Neuropathology and Experimental Neurology, vol. 66, no. 4, pp. 264–271, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Sundelof, V. Giedraitis, M. C. Irizarry et al., “Plasma β amyloid and the risk of Alzheimer disease and dementia in elderly men: a prospective, population-based cohort study,” Archives of Neurology, vol. 65, no. 2, pp. 256–263, 2008. View at Publisher · View at Google Scholar
  50. P. Lewczuk, J. Kornhuber, E. Vanmechelen et al., “Amyloid β peptides in plasma in early diagnosis of Alzheimer's disease: a multicenter study with multiplexing,” Experimental Neurology, vol. 223, no. 2, pp. 366–370, 2010. View at Publisher · View at Google Scholar
  51. J. C. Lambert, S. Schraen-Maschke, F. Richard et al., “Association of plasma amyloid β with risk of dementia: the prospective Three-City Study,” Neurology, vol. 73, no. 11, pp. 847–853, 2009. View at Publisher · View at Google Scholar · View at Scopus