About this Journal Submit a Manuscript Table of Contents
International Journal of Alzheimer’s Disease
Volume 2012 (2012), Article ID 970980, 14 pages
http://dx.doi.org/10.1155/2012/970980
Review Article

Drosophila Models of Tauopathies: What Have We Learned?

1Laboratory of Behavioral and Developmental Genetics, Center for Human Genetics, University of Leuven, 3000 Leuven, Belgium
2VIB Center for the Biology of Disease, 3000 Leuven, Belgium
3INSERM U744, Institut Pasteur de Lille, Université Lille Nord de France, 1 Rue du Professeur Calmette, 59019 Lille Cedex, France

Received 21 February 2012; Accepted 8 April 2012

Academic Editor: David Blum

Copyright © 2012 Marc Gistelinck et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. J. Bellen, C. Tong, and H. Tsuda, “100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future,” Nature Reviews Neuroscience, vol. 11, no. 7, pp. 514–522, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Lessing and N. M. Bonini, “Maintaining the brain: insight into human neurodegeneration from Drosophila melanogaster mutants,” Nature Reviews Genetics, vol. 10, no. 6, pp. 359–370, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Bier, “Drosophila, the golden bug, emerges as a tool for human genetics,” Nature Reviews Genetics, vol. 6, no. 1, pp. 9–23, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Bilen and N. M. Bonini, “Drosophila as a model for human neurodegenerative disease,” Annual Review of Genetics, vol. 39, pp. 153–171, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. M. B. Feany and W. W. Bender, “A Drosophila model of Parkinson's disease,” Nature, vol. 404, no. 6776, pp. 394–398, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. C. W. Wittmann, M. F. Wszolek, J. M. Shulman et al., “Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles,” Science, vol. 293, no. 5530, pp. 711–714, 2001. View at Scopus
  7. G. R. Jackson, M. Wiedau-Pazos, T. K. Sang et al., “Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila,” Neuron, vol. 34, no. 4, pp. 509–519, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Li, P. Ray, E. J. Rao et al., “A Drosophila model for TDP-43 proteinopathy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 7, pp. 3169–3174, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Dermaut, S. Kumar-Singh, R. Rademakers, J. Theuns, M. Cruts, and C. van Broeckhoven, “Tau is central in the genetic Alzheimer-frontotemporal dementia spectrum,” Trends in Genetics, vol. 21, no. 12, pp. 664–672, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. M. D. Adams and J. J. Sekelsky, “From sequence to phenotype: reverse genetics in Drosophila melanogaster,” Nature Reviews Genetics, vol. 3, no. 3, pp. 189–198, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. A. H. Brand and N. Perrimon, “Targeted gene expression as a means of altering cell fates and generating dominant phenotypes,” Development, vol. 118, no. 2, pp. 401–415, 1993. View at Scopus
  12. S. E. McGuire, P. T. Le, A. J. Osborn, K. Matsumoto, and R. L. Davis, “Spatiotemporal rescue of memory dysfunction in Drosophila,” Science, vol. 302, no. 5651, pp. 1765–1768, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Osterwalder, K. S. Yoon, B. H. White, and H. Keshishian, “A conditional tissue-specific transgene expression system using inducible GAL4,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 22, pp. 12596–12601, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. M. M. Burcin, G. Schiedner, S. Kochanek, S. Y. Tsai, and B. W. O'Malley, “Adenovirus-mediated regulable target gene expression in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 2, pp. 355–360, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. H. J. Bellen, R. W. Levis, Y. He et al., “The Drosophila gene disruption project: progress using transposons with distinctive site specificities,” Genetics, vol. 188, no. 3, pp. 731–743, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. K. G. Golic and S. Lindquist, “The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome,” Cell, vol. 59, no. 3, pp. 499–509, 1989. View at Scopus
  17. D. St Johnston, “The art and design of genetic screens: Drosophila melanogaster,” Nature Reviews Genetics, vol. 3, no. 3, pp. 176–188, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Ito, H. Sass, J. Urban, A. Hofbauer, and S. Schneuwly, “GALA4-responsive UAS-tau as a tool for studying the anatomy and development of the Drosophila central nervous system,” Cell and Tissue Research, vol. 290, no. 1, pp. 1–10, 1997. View at Publisher · View at Google Scholar · View at Scopus
  19. M. J. Murray, D. J. Merritt, A. H. Brand, and P. M. Whitington, “In vivo dynamics of axon pathfinding in the Drosophilia CNS: a time-lapse study of an identified motorneuron,” Journal of Neurobiology, vol. 37, no. 4, pp. 607–621, 1998.
  20. C. A. Callahan and J. B. Thomas, “Tau-β-galactosidase, an axon-targeted fusion protein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 13, pp. 5972–5976, 1994. View at Publisher · View at Google Scholar · View at Scopus
  21. D. W. Williams, M. Tyrer, and D. Shepherd, “Tau and tau reporters disrupt central projections of sensory neurons in Drosophila,” The Journal of Comparative Neurology, vol. 428, no. 4, pp. 630–640, 2000.
  22. S. L. Karsten, T. K. Sang, L. Gehman et al., “A genomic screen for modifiers of tauopathy identifies puromycin-sensitive aminopeptidase as an inhibitor of tau-induced neurodegeneration,” Neuron, vol. 51, no. 5, pp. 549–560, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Chatterjee, T. K. Sang, G. M. Lawless, and G. R. Jackson, “Dissociation of tau toxicity and phosphorylation: role of GSK-3β, MARK and Cdk5 in a Drosophila model,” Human Molecular Genetics, vol. 18, no. 1, pp. 164–177, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Kosmidis, S. Grammenoudi, K. Papanikolopoulou, and E. M. C. Skoulakis, “Differential effects of tau on the integrity and function of neurons essential for learning in Drosophila,” Journal of Neuroscience, vol. 30, no. 2, pp. 464–477, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. I. Nishimura, Y. Yang, and B. Lu, “PAR-1 kinase plays an initiator role in a temporally ordered phosphorylation process that confers tau toxicity in Drosophila,” Cell, vol. 116, no. 5, pp. 671–682, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. M. L. Steinhilb, D. Dias-Santagata, T. A. Fulga, D. L. Felch, and M. B. Feany, “Tau phosphorylation sites work in concert to promote neurotoxicity in vivo,” Molecular Biology of the Cell, vol. 18, no. 12, pp. 5060–5068, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. M. L. Steinhilb, D. Dias-Santagata, E. E. Mulkearns et al., “S/P and T/P phosphorylation is critical for tau neurotoxicity in Drosophila,” Journal of Neuroscience Research, vol. 85, no. 6, pp. 1271–1278, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Iijima-Ando, L. Zhao, A. Gatt, C. Shenton, and K. Iijima, “A DNA damage-activated checkpoint kinase phosphorylates tau and enhances tau-induced neurodegeneration,” Human Molecular Genetics, vol. 19, no. 10, pp. 1930–1938, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. V. Khurana, Y. Lu, M. L. Steinhilb, S. Oldham, J. M. Shulman, and M. B. Feany, “TOR-mediated cell-cycle activation causes neurodegeneration in a Drosophila tauopathy model,” Current Biology, vol. 16, no. 3, pp. 230–241, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. J. B. Reinecke, S. L. DeVos, J. P. McGrath, et al., “Implicating calpain in tau-mediated toxicity in vivo,” PLoS ONE, vol. 6, no. 8, Article ID e23865, 2011. View at Publisher · View at Google Scholar
  31. V. Khurana, I. Elson-Schwab, T. A. Fulga et al., “Lysosomal dysfunction promotes cleavage and neurotoxicity of tau in vivo,” PLoS Genetics, vol. 6, no. 7, Article ID e1001026, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Mershin, E. Pavlopoulos, O. Fitch, B. C. Braden, D. V. Nanopoulos, and E. M. C. Skoulakis, “Learning and memory deficits upon tau accumulation in Drosophila mushroom body neurons,” Learning and Memory, vol. 11, no. 3, pp. 277–287, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Doerflinger, R. Benton, J. M. Shulman, and D. st Johnston, “The role of PAR-1 in regulating the polarised microtubule cytoskeleton in the Drosophila follicular epithelium,” Development, vol. 130, no. 17, pp. 3965–3975, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Feuillette, L. Miguel, T. Frébourg, D. Campion, and M. Lecourtois, “Drosophila models of human tauopathies indicate that tau protein toxicity in vivo is mediated by soluble cytosolic phosphorylated forms of the protein,” Journal of Neurochemistry, vol. 113, no. 4, pp. 895–903, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. D. R. Micklem, R. Dasgupta, H. Elliott et al., “The mago nashi gene is required for the polarisation of the oocyte and the formation of perpendicular axes in Drosophila,” Current Biology, vol. 7, no. 7, pp. 468–478, 1997. View at Scopus
  36. G. Heidary and M. E. Fortini, “Identification and characterization of the Drosophila tau homolog,” Mechanisms of Development, vol. 108, no. 1-2, pp. 171–178, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. A. G. Tian and W. M. Deng, “Par-1 and tau regulate the anterior-posterior gradient of microtubules in Drosophila oocytes,” Developmental Biology, vol. 327, no. 2, pp. 458–464, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. A. B. Da Cruz, M. Schwärzel, S. Schulze, M. Niyyati, M. Heisenberg, and D. Kretzschmar, “Disruption of the MAP1B-related protein FUTSCH leads to changes in the neuronal cytoskeleton, axonal transport defects, and progressive neurodegeneration in Drosophila,” Molecular Biology of the Cell, vol. 16, no. 5, pp. 2433–2442, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. X. Chen, Y. Li, J. Huang et al., “Study of tauopathies by comparing Drosophila and human tau in Drosophila,” Cell and Tissue Research, vol. 329, no. 1, pp. 169–178, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. K. K. Ubhi, H. Shaibah, T. A. Newman, D. Shepherd, and A. Mudher, “A comparison of the neuronal dysfunction caused by Drosophila tau and human tau in a Drosophila model of tauopathies,” Invertebrate Neuroscience, vol. 7, no. 3, pp. 165–171, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. J. M. Shulman and M. B. Feany, “Genetic modifiers of tauopathy in Drosophila,” Genetics, vol. 165, no. 3, pp. 1233–1242, 2003. View at Scopus
  42. S. S. Ambegaokar and G. R. Jackson, “Functional genomic screen and network analysis reveal novel modifiers of tauopathy dissociated from tau phosphorylation,” Human Molecular Genetics, vol. 20, pp. 4947–4977, 2011.
  43. O. Blard, S. Feuillette, J. Bou et al., “Cytoskeleton proteins are modulators of mutant tau-induced neurodegeneration in Drosophila,” Human Molecular Genetics, vol. 16, no. 5, pp. 555–566, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. F. Pichaud and C. Desplan, “A new visualization approach for identifying mutations that affect differentiation and organization of the Drosophila ommatidia,” Development, vol. 128, no. 6, pp. 815–826, 2001. View at Scopus
  45. A. Gambis, P. Dourlen, H. Steller, and B. Mollereau, “Two-color in vivo imaging of photoreceptor apoptosis and development in Drosophila,” Developmental Biology, vol. 351, no. 1, pp. 128–134, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. B. Dermaut, K. K. Norga, A. Kania et al., “Aberrant lysosomal carbohydrate storage accompanies endocytic defects and neurodegeneration in Drosophila benchwarmer,” Journal of Cell Biology, vol. 170, no. 1, pp. 127–139, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. P. A. Yeh, J. Y. Chien, C. C. Chou et al., “Drosophila notal bristle as a novel assessment tool for pathogenic study of tau toxicity and screening of therapeutic compounds,” Biochemical and Biophysical Research Communications, vol. 391, no. 1, pp. 510–516, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Folwell, C. M. Cowan, K. K. Ubhi et al., “Aβ exacerbates the neuronal dysfunction caused by human tau expression in a Drosophila model of Alzheimer's disease,” Experimental Neurology, vol. 223, no. 2, pp. 401–409, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. Talmat-Amar, Y. Arribat, C. Redt-Clouet, et al., “Important neuronal toxicity of microtubule-bound tau in vivo in Drosophila,” Human Molecular Genetics, vol. 20, pp. 3738–3745, 2011.
  50. K. J. Colodner and M. B. Feany, “Glial fibrillary tangles and JAK/STAT-mediated glial and neuronal cell death in a Drosophila model of glial tauopathy,” Journal of Neuroscience, vol. 30, no. 48, pp. 16102–16113, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. L. Torroja, H. Chu, I. Kotovsky, and K. White, “Neuronal overexpression of APPL, the Drosophila homologue of the amyloid precursor protein (APP), disrupts axonal transport,” Current Biology, vol. 9, no. 9, pp. 489–492, 1999. View at Publisher · View at Google Scholar · View at Scopus
  52. T. L. Falzone, S. Gunawardena, D. McCleary, G. F. Reis, and L. S. Goldstein, “Kinesin-1 transport reductions enhance human tau hyperphosphorylation, aggregation and neurodegeneration in animal models of tauopathies,” Human Molecular Genetics, vol. 19, no. 22, pp. 4399–4408, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. O. Ali, K. Ruan, and R. G. Zhai, “NMNAT suppresses tau-induced neurodegeneration by promoting clearance of hyperphosphorylated tau oligomers in a Drosophila model of tauopathy,” Human Molecular Genetics, vol. 21, no. 2, pp. 237–250, 2012.
  54. D. Dias-Santagata, T. A. Fulga, A. Duttaroy, and M. B. Feany, “Oxidative stress mediates tau-induced neurodegeneration in Drosophila,” Journal of Clinical Investigation, vol. 117, no. 1, pp. 236–245, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Mudher, D. Shepherd, T. A. Newman et al., “GSK-3β inhibition reverses axonal transport defects and behavioural phenotypes in Drosophila,” Molecular Psychiatry, vol. 9, no. 5, pp. 522–530, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. J. G. Gindhart Jr., C. J. Desai, S. Beushausen, K. Zinn, and L. S. B. Goldstein, “Kinesin light chains are essential for axonal transport in Drosophila,” Journal of Cell Biology, vol. 141, no. 2, pp. 443–454, 1998. View at Publisher · View at Google Scholar · View at Scopus
  57. M. A. Martin, S. J. Iyadurai, A. Gassman, J. G. Gindhart Jr., T. S. Hays, and W. M. Saxton, “Cytoplasmic dynein, the dynactin complex, and kinesin are interdependent and essential for fast axonal transport,” Molecular Biology of the Cell, vol. 10, no. 11, pp. 3717–3728, 1999. View at Scopus
  58. H. Luan, W. C. Lemon, N. C. Peabody et al., “Functional dissection of a neuronal network required for cuticle tanning and wing expansion in Drosophila,” Journal of Neuroscience, vol. 26, no. 2, pp. 573–584, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. N. C. Peabody, F. Diao, H. Luan et al., “Bursicon functions within the Drosophila CNS to modulate wing expansion behavior, hormone secretion, and cell death,” Journal of Neuroscience, vol. 28, no. 53, pp. 14379–14391, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. B. J. Loveall and D. L. Deitcher, “The essential role of bursicon during Drosophila development,” BMC Developmental Biology, vol. 10, article 92, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. G. Roman and R. L. Davis, “Molecular biology and anatomy of Drosophila olfactory associative learning,” BioEssays, vol. 23, no. 7, pp. 571–581, 2001. View at Publisher · View at Google Scholar · View at Scopus
  62. S. S. Ambegaokar and G. R. Jackson, “Interaction between eye pigment genes and tau-induced neurodegeneration in Drosophila melanogaster,” Genetics, vol. 186, no. 1, pp. 435–442, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. C. M. Cowan, T. Bossing, A. Page, D. Shepherd, and A. Mudher, “Soluble hyper-phosphorylated tau causes microtubule breakdown and functionally compromises normal tau in vivo,” Acta Neuropathologica, vol. 120, no. 5, pp. 593–604, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. C. M. Cowan, D. Shepherd, and A. Mudher, “Insights from Drosophila models of Alzheimer's disease,” Biochemical Society Transactions, vol. 38, no. 4, pp. 988–992, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. S. Feuillette, V. Deramecourt, A. Laquerriere et al., “Filamin-A and Myosin VI colocalize with fibrillary tau protein in Alzheimer's disease and FTDP-17 brains,” Brain Research, vol. 1345, pp. 182–189, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. T. A. Fulga, I. Elson-Schwab, V. Khurana et al., “Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo,” Nature Cell Biology, vol. 9, no. 2, pp. 139–148, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. F. C. Chee, A. Mudher, M. F. Cuttle et al., “Over-expression of tau results in defective synaptic transmission in Drosophila neuromuscular junctions,” Neurobiology of Disease, vol. 20, no. 3, pp. 918–928, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. S. Feuillette, O. Blard, M. Lecourtois, T. Frébourg, D. Campion, and C. Dumanchin, “Tau is not normally degraded by the proteasome,” Journal of Neuroscience Research, vol. 80, no. 3, pp. 400–405, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. C. A. Loewen and M. B. Feany, “The unfolded protein response protects from tau neurotoxicity in vivo,” PLoS ONE, vol. 5, no. 9, Article ID e13084, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. C. S. Mendes, C. Levet, G. Chatelain et al., “ER stress protects from retinal degeneration,” EMBO Journal, vol. 28, no. 9, pp. 1296–1307, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. S. Sengupta, P. M. Horowitz, S. L. Karsten et al., “Degradation of tau protein by puromycin-sensitive aminopeptidase in vitro,” Biochemistry, vol. 45, no. 50, pp. 15111–15119, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. K. M. Chow, H. Guan, and L. B. Hersh, “Aminopeptidases do not directly degrade tau protein,” Molecular Neurodegeneration, vol. 5, no. 1, article 48, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. F. M. Menzies, R. Hourez, S. Imarisio et al., “Puromycin-sensitive aminopeptidase protects against aggregation-prone proteins via autophagy,” Human Molecular Genetics, vol. 19, no. 23, pp. 4573–4586, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. K. Iijima, A. Gatt, and K. Iijima-Ando, “Tau Ser262 phosphorylation is critical for Aβ42-induced tau toxicity in a transgenic Drosophila model of Alzheimer's disease.,” Human Molecular Genetics, vol. 19, no. 15, pp. 2947–2957, 2010. View at Scopus
  75. S. Grammenoudi, S. Kosmidis, and E. M. C. Skoulakis, “Cell type-specific processing of human tau proteins in Drosophila,” FEBS Letters, vol. 580, no. 19, pp. 4602–4606, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. K. Papanikolopoulou, S. Kosmidis, S. Grammenoudi, and E. M. C. Skoulakis, “Phosphorylation differentiates tau-dependent neuronal toxicity and dysfunction,” Biochemical Society Transactions, vol. 38, no. 4, pp. 981–987, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. K. Papanikolopoulou and E. M. C. Skoulakis, “The power and richness of modelling tauopathies in Drosophila,” Molecular Neurobiology, vol. 44, no. 1, pp. 122–133, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. J. M. Shulman, P. Chipendo, L. B. Chibnik et al., “Functional screening of Alzheimer pathology genome-wide association signals in Drosophila,” American Journal of Human Genetics, vol. 88, no. 2, pp. 232–238, 2011. View at Publisher · View at Google Scholar · View at Scopus