About this Journal Submit a Manuscript Table of Contents
International Journal of Alzheimer’s Disease
Volume 2013 (2013), Article ID 586365, 4 pages
http://dx.doi.org/10.1155/2013/586365
Review Article

Zinc Deficiency and Zinc Therapy Efficacy with Reduction of Serum Free Copper in Alzheimer’s Disease

1Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
2Monmouth University, West Long Branch, NJ 07764, USA

Received 2 July 2013; Accepted 4 September 2013

Academic Editor: Rosanna Squitti

Copyright © 2013 George J. Brewer and Sukhvir Kaur. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Alzheimer's Association, “Alzheimer's disease facts and figures,” 2010.
  2. G. J. Brewer, “The risks of copper toxicity contributing to cognitive decline in the aging population and to Alzheimer's disease,” Journal of the American College of Nutrition, vol. 28, no. 3, pp. 238–242, 2009. View at Scopus
  3. G. J. Brewer, “Issues raised involving the copper hypotheses in the causation of Alzheimer's disease,” International Journal of Alzheimer's Disease, vol. 2011, Article ID 537528, 11 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. G. J. Brewer, “Copper toxicity in Alzheimer's disease: cognitive loss from ingestion of inorganic copper,” Journal of Trace Elements in Medicine and Biology, vol. 26, no. 2-3, pp. 89–92, 2012.
  5. G. J. Brewer, “Metals in the causation and treatment of Wilson’s disease and Alzheimer’s disease, and copper lowering therapy in medicine,” Inorganica Chimica Acta, vol. 393, pp. 135–141, 2012.
  6. G. M. Hill, G. J. Brewer, and J. E. Juni, “Treatment of Wilson's disease with zinc. II. Validation of oral 64 coppper with copper balance,” American Journal of the Medical Sciences, vol. 292, no. 6, pp. 344–349, 1986. View at Scopus
  7. R. Squitti, P. Pasqualetti, G. Dal Forno et al., “Excess of serum copper not related to ceruloplasmin in Alzheimer disease,” Neurology, vol. 64, no. 6, pp. 1040–1046, 2005. View at Scopus
  8. R. Squitti, G. Barbati, L. Rossi et al., “Excess of nonceruloplasmin serum copper in AD correlates with MMSE, CSF β-amyloid, and h-tau,” Neurology, vol. 67, no. 1, pp. 76–82, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Squitti, F. Bressi, P. Pasqualetti et al., “Longitudinal prognostic value of serum “free” copper in patients with Alzheimer disease,” Neurology, vol. 72, no. 1, pp. 50–55, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Miyata and J. D. Smith, “Apolipoprotein E allele-specific antioxidant activity and effects on cytotoxicity by oxidative insults and β-amyloid peptides,” Nature Genetics, vol. 14, no. 1, pp. 55–61, 1996. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Seshadri, A. Beiser, J. Selhub et al., “Plasma homocysteine as a risk factor for dementia and Alzheimer's disease,” The New England Journal of Medicine, vol. 346, no. 7, pp. 476–483, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Moalem, M. E. Percy, D. F. Andrews, et al., “Are hereditary hemochromatosis mutations involved in Alzheimer disease?” American Journal of Medical Genetics, vol. 93, no. 1, pp. 58–66, 2000.
  13. P. Zambenedetti, G. De Bellis, I. Biunno, M. Musicco, and P. Zatta, “Transferrin C2 variant does confer a risk for Alzheimer's disease in caucasians,” Journal of Alzheimer's Disease, vol. 5, no. 6, pp. 423–427, 2003. View at Scopus
  14. S. Bucossi, S. Mariani, M. Ventriglia et al., “Association between the c. 2495 A>G ATP7B polymorphism and sporadic Alzheimer's disease,” International Journal of Alzheimer's Disease, vol. 2011, Article ID 973692, 9 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. G. J. Brewer, S. H. Kanzer, E. A. Zimmerman et al., “Subclinical zinc deficiency in Alzheimer's disease and Parkinson's disease,” American Journal of Alzheimer's Disease and other Dementias, vol. 25, no. 7, pp. 572–575, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Baum, I. H. S. Chan, S. K.-K. Cheung et al., “Serum zinc is decreased in Alzheimer's disease and serum arsenic correlates positively with cognitive ability,” Biometals, vol. 23, no. 1, pp. 173–179, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Takeda, “Insight into glutamate excitotoxicity from synaptic zinc homeostasis,” International Journal of Alzheimer's Disease, vol. 2011, Article ID 491597, 8 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. P. J. Crouch, M. S. Savva, L. W. Hung et al., “The Alzheimer's therapeutic PBT2 promotes amyloid-β degradation and GSK3 phosphorylation via a metal chaperone activity,” Journal of Neurochemistry, vol. 119, no. 1, pp. 220–230, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. P. A. Adlard, J. M. Parncutt, D. I. Finkelstein, and A. I. Bush, “Cognitive loss in zinc transporter-3 knock-out mice: a phenocopy for the synaptic and memory deficits of Alzheimer's disease?” Journal of Neuroscience, vol. 30, no. 5, pp. 1631–1636, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Constantinidis, “Treatment of Alzheimer's disease by zinc compounds,” Drug Development Research, vol. 27, no. 1, pp. 1–14, 1992. View at Scopus
  21. C. Corona, F. Masciopinto, E. Silvestri et al., “Dietary zinc supplementation of 3xTg-AD mice increases BDNF levels and prevents cognitive deficits as well as mitochondrial dysfunction,” Cell Death & Disease, vol. 1, article e91, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. G. J. Brewer, R. D. Dick, V. D. Johnson, J. A. Brunberg, K. J. Kluin, and J. K. Fink, “Treatment of Wilson's disease with zinc: XV long-term follow-up studies,” Journal of Laboratory and Clinical Medicine, vol. 132, no. 4, pp. 264–278, 1998. View at Scopus
  23. P. L. Wolf, “Ceruloplasmin: methods and clinical use,” Critical Reviews in Clinical Laboratory Sciences, vol. 17, no. 3, pp. 229–245, 1982. View at Scopus