About this Journal Submit a Manuscript Table of Contents
International Journal of Aerospace Engineering
Volume 2012 (2012), Article ID 121802, 31 pages
http://dx.doi.org/10.1155/2012/121802
Review Article

Recent Experimental Efforts on High-Pressure Supercritical Injection for Liquid Rockets and Their Implications

Advanced Technology Consultants, Laguna Niguel, CA 92677, USA

Received 6 March 2012; Revised 3 June 2012; Accepted 11 June 2012

Academic Editor: David Greatrix

Copyright © 2012 Bruce Chehroudi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. J. Bruno and J. F. Ely, Supercritical Fluid Technology: Review in Modern Theory and Applications, CRC Press, 1991.
  2. R. S. Lazar and G. M. Faeth, “Bipropellant droplet combustion in the vicinity of the critical point,” in Proceedings of the 30th Symposium (International) on Combustion, p. 801, The Combustion Institute, 1971.
  3. A. Umemura, “Supercritical droplet gasification combustion,” in Proceedings of the IUTAM Symposium on Theories Combustion on Droplets and Sprays, Taiwan, December 1994.
  4. J. A. Newman and Brzustowski, “Behavior of a liquid jet near the thermodynamic critical region,” AIAA Journal, vol. 9, no. 8, pp. 1595–1602, 1971. View at Scopus
  5. B. Chehroudi, D. Talley, and E. Coy, “Initial growth rate and visual characteristics of a round Jet into a sub- to supercritical environment of relevance to rocket, gas turbine, and diesel engines,” in Proceedings of the 37th AIAA Aerospace Science Meeting and Exhibit, Reno, NV, USA, January 1999, AIAA 99-0206.
  6. W. Mayer, A. Schik, C. Schweitzer, and M. Schaffler, “Injection and mixing processes in high pressure LOX/GH2 rocket combustors,” in Proceedings of the 32nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Lake Buena Vista, Fla, USA, 1996, AIAA Paper no. 96-2620.
  7. R. D. Reitz and F. B. Bracco, “On the dependence of spray angle and other spray parameters on nozzle design and operating condition,” in Proceedings of the SAE International Congress and Exposition, Detroit, MI, USA, February-March 1979, SAE Paper no. 790494.
  8. W. Mayer, A. Ivancic, A. Schik, and U. Homung, “Propellant atomization in LOX/GH2 rocket combustors,” in Proceedings of the 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Cleveland, Ohio, USA, July 1998, Paper no. 98-3685.
  9. A. Roy and C. Segal, “Experimental study of subcritical to supercritical jet mixing,” in Proceedings of the 47th AIAA ASM Meeting, Paper AIAA-2009-809, Orlando, Fla, USA, January 2008.
  10. B. Chehroudi, D. Talley, and E. Coy, “Visual characteristics and initial growth rates of round cryogenic jets at subcritical and supercritical pressures,” Physics of Fluids, vol. 14, no. 2, pp. 850–861, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. C. J. Chen and W. Rodi, Vertical Turbulent Buoyant Jets: A Review of Experimental Data, Pergamon Press, 1980.
  12. P. N. Papanicolaou and E. J. List, “Investigations of round vertical turbulent buoyant jets,” Journal of Fluid Mechanics, vol. 195, pp. 341–391, 1988. View at Publisher · View at Google Scholar
  13. R. Branam and W. Mayer, “Characterization of cryogenic injection at supercritical pressure,” Journal of Propulsion and Power, vol. 19, no. 3, pp. 342–355, 2003. View at Scopus
  14. G. N. Abramovich, The Theory of Turbulent Jets, MIT Press, Cambridge, UK, 1963.
  15. G. L. Brown and A. Roshko, “On density effects and large structure in turbulent mixing layers,” Journal of Fluid Mechanics, vol. 64, no. 4, pp. 775–816, 1974. View at Scopus
  16. G. Brown, “The entrainment and large structure in turbulent mixing layers,” in Proceedings of the 5th Australian Conference on Hydraulics and Fluid Mechanics, pp. 352–359, 1974.
  17. D. Papamoschou and A. Roshko, “The compressible turbulent shear layer: an experimental study,” Journal of Fluid Mechanics, vol. 197, pp. 453–477, 1988. View at Scopus
  18. P. E. Dimotakis, “Two-dimensional shear-layer entrainment,” AIAA Journal, vol. 24, no. 11, pp. 1791–1796, 1986. View at Scopus
  19. C. D. Richards and W. M. Pitts, “Global density effects on the self-preservation behaviour of turbulent free jets,” Journal of Fluid Mechanics, vol. 254, pp. 417–435, 1993. View at Scopus
  20. B. Chehroudi, R. Cohn, D. Talley, and A. Badakhshan, “Raman scattering measurements in the initial region of sub- and supercritical jets,” in Proceedings of the 36th Joint Propulsion Conference, Huntsville, AL, USA, 2000, AIAA 2000-3392.
  21. M. Oschwald and M. M. Micci, “Spreading angle and centerline variation of density of supercritical nitrogen jets,” Atomization and Sprays, vol. 12, no. 1–3, pp. 91–106, 2002. View at Scopus
  22. B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman and Company, San Francisco, Calif, USA, 1983.
  23. K. R. Sreenivasan and C. Meneveau, “The fractal facets of turbulence,” Journal of Fluid Mechanics, vol. 173, pp. 357–386, 1986. View at Scopus
  24. J. J. Taylor and J. W. Hoyt, “Water jet photography—techniques and methods,” Experiments in Fluids, vol. 1, no. 3, pp. 113–120, 1983. View at Publisher · View at Google Scholar · View at Scopus
  25. B. Chehroudi, D. Talley, and E. Coy, “Fractal geometry and growth rate of cryogenic jets near critical point,” in Proceedings of the 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Los Angeles, Calif, USA, June 1999, AIAA Paper 99-2489.
  26. B. Chehroudi and D. Talley, “The fractal geometry of round turbulent cryogenic nitrogen jets at subcritical and supercritical pressures,” Atomization and Sprays, vol. 14, no. 1, pp. 81–91, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Chehroudi, S.-H. Chen, F. V. Bracco, and Y. Onuma, “On the intact core of full-cone sprays,” SAE Transaction 850126, 1985.
  28. M. Oschwald and A. Schik, “Supercritical nitrogen free jet investigated by spontaneous Raman scattering,” Experiments in Fluids, vol. 27, no. 6, pp. 497–506, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. I. Wygnanski and H. E. Fiedler, “The two-dimensional Mixing region,” Journal of Fluid Mechanics, vol. 41, no. 2, pp. 327–361, 1970. View at Scopus
  30. R. M. C. So, J. Y. Zhu, M. V. Ötügen, and B. C. Hwang, “Some measurements in a binary gas jet,” Experiments in Fluids, vol. 9, no. 5, pp. 273–284, 1990. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Zong, H. Meng, S.-Y. Hsieh, and V. Yang, “A numerical study of cryogenic fluid injection and mixing under supercritical conditions,” Physics of Fluids, vol. 16, no. 12, pp. 4248–4261, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Oschwald, A. Schik, M. Klar, and W. Mayer, “Investigation of coaxial LN2/GH2-injection at supercritical pressure by spontaneous raman scattering,” in Proceedings of the 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Los Angeles, Calif, USA, June 1999.
  33. L.-K. Tseng, G. A. Ruff, P.-K. Wu, and G. M. Faeth, “Continuous- and dispersed-phase structure of pressure-atomized sprays,” in Proceedings of the Progress in Astronautics and Aeronautics: Recent Advances in Spray Combustion, 1995.
  34. N. Zong and V. Yang, “Cryogenic fluid jets and mixing layers in transcritical and supercritical environments,” Combustion Science and Technology, vol. 178, no. 1-3, pp. 193–227, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. J. C. Oefelein and V. Yang, “Comprehensive review of liquid-propellant combustion instabilities in F-1 engines,” Journal of Propulsion and Power, vol. 9, no. 5, pp. 657–677, 1993. View at Scopus
  36. B. Chehroudi and D. Talley, “Interaction of acoustic waves with a cryogenic nitrogen jet at sub- and supercritical pressures,” in Proceedings of the 40th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 2002, AIAA 2002-0342.
  37. D. O. Rockwell, “External excitation of planar jets,” Journal of Applied Mechanics, vol. 39, no. 4, pp. 883–891, 1972. View at Scopus
  38. H. A. Becker and T. A. Massaro, “Vortex evolution in a round jet,” Journal of Fluid Mechanics, vol. 31, pp. 435–448, 1968.
  39. Y. V. Vaslov and A. S. Ginevskiy, “Acoustic effects on aerodynamic characteristics of a turbulent jet,” Tech. Rep. FTD-MT-24-232-68, Foreign Technology Division, Air Force Systems Command, 1968.
  40. J. Hulka and J. J. Hutt, “Instability phenomena in liquid oxygen/hydrogen propellant rocket engines,” in Liquid Rocket Engine Combustion Instability, V. Yang and W. E. Anderson, Eds., AIAA Progress in Astronautics and Aeronautics, pp. 39–71, 1995.
  41. J. Telaar, G. Schneider, and W. Mayer, Experimental Investigation of Breakup of Turbulent Liquid Jets, ILASS-Europe 2000, Darmstadt, Germany, 2000.
  42. D. Davis and B. Chehroudi, “The effects of pressure and acoustic field on a cryogenic coaxial jet,” in Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit, pp. 10741–10759, January 2004. View at Scopus
  43. D. Davis and B. Chehroudi, “Behaviour of a rocket-Like coaxial injector in an acoustic field, ILAS america,” in Proceedings of the 19th Annual Conference on Liquid Atomization and Spray Systems, Toronto, Canada, May 2006.
  44. D. W. Davis, On the behavior of a shear-coaxial Jet, spanning sub- to super-critical pressures, with and without an externally imposed transverse acoustic field [Ph.D. thesis], Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, 2006.
  45. M. Oschwald, J. J. Smith, R. Branam et al., “Injection of fluids into supercritical environments,” Combustion Science and Technology, vol. 178, no. 1–3, pp. 49–100, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Favre-Marinet and E. B. Camano Schettini, “Density field of coaxial jets with large velocity ratio and large density differences,” International Journal of Heat and Mass Transfer, vol. 44, no. 10, pp. 1913–1924, 2001. View at Publisher · View at Google Scholar · View at Scopus
  47. H. Eroglu, N. Chigier, and Z. Farago, “Coaxial atomizer liquid intact lengths,” Physics of Fluids A, vol. 3, no. 2, pp. 303–308, 1991. View at Scopus
  48. C. Englebert, Y. Hardalupas, and J. H. Whitlaw, “Article usage statistics center,” Proceedings of the Royal Society A, vol. 451, pp. 189–229, 1995.
  49. Z. Faragó and N. Chigier, “Morphological classification of disintegration of round liquid jets in a coaxial air stream,” Atomization and Sprays, vol. 2, pp. 137–153, 1992.
  50. R. D. Woodward, Primary atomization of liquid jets issuing from rocket engine coaxial Injectors [Ph.D. thesis], Pennsylvania State University, Department of Mechanical Engineering, University Park, Pa, USA, 1993.
  51. B. Chehroudi, D. Davis, and D. Talley, “Initial results from a cryogenic coaxial injector in an acoustic field,” in Proceedings of the 41st Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 2003, AIAA 2003-1339.
  52. I. A. Leyva, J. I. Rodriguez, B. Chehroudi, and D. Talley, “Preliminary results on coaxial jet spread angles and the effects of variable phase transverse acoustic fields,” in Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nv, USA, January 2008. View at Scopus
  53. J. C. Lasheras and E. J. Hopfinger, “Liquid jet instability and atomization in a coaxial gas stream,” Annual Review of Fluid Mechanics, vol. 32, pp. 275–308, 2000. View at Scopus
  54. J. I. Rodriguez, I. A. Leyva, B. Chehroudi, and D. Talley, in Proceedings of the 21st Annual Conference on Liquid Atomization and Spray Systems (ILASS '08), Orlando, Fla, USA, May 2008.
  55. J. I. Rodriguez, Acoustic excitation of liquid fuel droplets and coaxial jets [Ph.D. thesis], University of California at Los Angeles, 2009.
  56. B. Chehroudi, “Physical hypothesis for the combustion instability in cryogenic liquid rocket engines,” Journal of Propulsion and Power, vol. 26, no. 6, pp. 1153–1160, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. W. E. Anderson, H. M. Ryan, R. J. Santoro, and R. A. Hewitt, “Combustion instability mechanisms in liquid rocket engines using impinging jet injectors,” in Proceedings of the 31st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, San Diego, Calif, USA, July 1995, Paper AIAA-95-2357.
  58. T. D. Harrje and H. F. Reardon, “Propellant rocket combustion instability,” NASA Report, 1972, NASA SP-194.
  59. “Liquid rocket engine combustion instability,” in Proceedings of the AIAA Progress in Astronautics and Aeronautics, V. Yang and W. E. Anderson, Eds., vol. 169, p. 577, 1995.
  60. L. Rayleigh, “The explanation of certain acoustical phenomena,” in Proceedings of the Royal Institution, vol. 8, pp. 536–542, London, UK, 1878.
  61. M. F. Heidemann and J. F. Groeneweg, “Analysis of the dynamic response of liquid Jet atomization to acoustic oscillations,” NASA Technical Note, 1969, NASA TN D-5339.
  62. T. Kiwata, A. Okajima, and H. Ueno, “Effects of excitation on plane and coaxial jets,” in Proceedings of the 3rd Joint ASME/JSME Fluid Engineering Conference, pp. 18–22, San Francisco, Calif, USA, 1999.
  63. D. W. Davis and B. Chehroudi, “Measurements in an acoustically-driven coaxial jet under supercritical conditions,” Journal of Propulsion and Power, vol. 23, no. 2, pp. 364–374, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. D. W. Davis and B. Chehroudi, “Shear-coaxial jets from a rocket-like injector in a transverse acoustic field at high pressures,” in Proceedings of the 44th AIAA Aerospace Sciences Meeting, pp. 9173–9190, Reno, Nv, USA, January 2006, Paper No. AIAA-2006-0758. View at Scopus
  65. I. A. Leyva, B. Chehroudi, and D. Talley, “Dark core analysis of coaxial injectors at sub-, near-, and supercritical pressures in a transverse acoustic field,” in Proceedings of the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, pp. 4342–4359, Cincinnati, Ohio, USA, July 2007. View at Scopus
  66. R. D. Woodward, S. Pal, S. Farhangi, G. E. Jensen, and R. J. Santoro, “LOX/GH2 shear coaxial injector atomization studies: effect of recess and non-concentricity,” in Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit, pp. 6925–6946, Reno, Nv, USA, January 2007. View at Scopus
  67. B. Yang, C. Francesco, L. Wang, and M. Oschwald, “Experimental investigation of reactive liquid Oxygen/CH4 coaxial sprays,” Journal of Propulsion and Power, vol. 23, no. 4, pp. 763–771, 2007.
  68. J. J. Smith, M. Bechle, D. Suslov, M. Oschwald, O. J. Haidn, and G. M. Schneider, “High pressure LOx/H2 combustion and flame dynamics preliminary results,” in Proceedings of the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Fort Lauderdale, Fla, USA, July 2004, AIAA-2004-3376. View at Scopus