International Journal of Aerospace Engineering
 Journal metrics
See full report
Acceptance rate31%
Submission to final decision108 days
Acceptance to publication20 days
CiteScore2.500
Journal Citation Indicator0.440
Impact Factor1.4

Predicting Flight Delays with Machine Learning: A Case Study from Saudi Arabian Airlines

Read the full article

 Journal profile

International Journal of Aerospace Engineering serves the international aerospace engineering community through the dissemination of scientific knowledge on practical engineering and design methodologies pertaining to aircraft and space vehicles.

 Editor spotlight

Chief Editor, Professor Zhao, is based at the University of Canterbury and his research interests include applying theoretical, numerical and experimental approaches to study combustion instability, thermoacoustics and aerodynamics.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

Numerical Study on the Self-Pulsation Characteristics of LOX/GH2 Swirl Coaxial Injector

To investigate the self-pulsation characteristics of a liquid-centered swirl coaxial injector with liquid oxygen (LOX) and gas hydrogen (GH2) as the working mediums under supercritical condition, a numerical simulation was employed. The transient simulation of the flow and injection process of cryogenic propellant was carried out using the RNG turbulence model, VOF model, and Peng-Robinson equation of state. The frequency spectrum of calculated pressure oscillation agreed with the experimental data. The amplitude-frequency characteristics of recess region, LOX, and GH2 paths when self-pulsation occurs were analyzed. The effects of operating parameters, such as the flow rate of LOX or GH2 and the initial GH2 temperature, on the self-pulsation, were evaluated specifically. Results reveal that the self-pulsation results from the periodic variation of pressure and velocity caused by the periodic blocking of annular gas by the liquid sheet. The dominant frequencies of pressure oscillation in the recess region, upstream of LOX, or GH2 path are diverse. But for the points in each region, the dominant frequency is about the same. When the LOX/GH2 mixing ratio increases, the liquid sheet thickness and the number of liquid filaments increase. The position where filaments are massively broken into droplets moves further downstream. For the same mixing ratio, the flow rate of LOX has a greater impact on the atomization features. The pressures corresponding to low or high frequency increase when the initial GH2 temperature raises. The higher temperature would shift the dominant oscillation between the low and high regimes.

Research Article

Online Identification of Aerodynamic Parameters of Experimental Rockets Based on Unscented Kalman Filtering

Online identification of aerodynamic parameters of experimental rockets was completed based on unscented Kalman filtering (UKF). Numerical simulation, hardware-in-the-loop (HIL) simulation, and flight tests were conducted. The identification error of aerodynamic force in numerical simulation and HIL simulation is within 2%. For flight test data, trajectory reconstruction was performed using the identified aerodynamic forces, and the results showed that the identification results were more accurate than the interpolation table calculation results. The flight test identification results show that the identification method can complete parameter online identification under the conditions of limited performance of onboard computers, real sensor errors, and servo response. The approximate linear correlation between and and the reason for their formation from the moment balance were analyzed. It was pointed out that when the recognition sampling period is long, this phenomenon will affect the identification of parameters, and a solution is proposed.

Research Article

Machine Learning-Based Backpressure Unstart Prediction and Warning Method for Combined Cycle Engine Hypersonic Inlet-Oriented Wide Speed Range

Inlet unstart prediction and warning are strictly crucial to the operation of hypersonic engines, especially for combined cycle engines where implementation across a wide speed range poses significant challenges. This paper proposes a realization method that involves constructing the conditions of critical backpressure ratios for the inlet unstart and unstart warning states within a wide speed range and establishing the backpressure prediction models for each engine mode. The detection of the unstart and unstart warning states is achieved by predicting the backpressure ratio at the exit of the isolator and comparing it to the critical backpressure ratios. To achieve this, numerical simulations for a three-dimensional inward-turning multiducted hypersonic combined inlet at various Mach numbers and backpressure ratios are carried out to obtain the dataset of surface pressure. A 10-fold cross-validation support vector machine (10-CV SVM) is used to solve the unstart boundary of surface pressure, and an unstart margin is set to determine the unstart warning boundary. A back propagation (BP) neural network is constructed to estimate the critical backpressure ratios at each working point within a wide speed range. The data information of surface pressure on the boundaries is used as the input for the predictions. The overall average regression correlation coefficient approaches 0.99 on the test dataset at each working point. The backpressure prediction models are established by the one-dimensional convolutional neural network (1D-CNN). Only 2 to 4 measurement points of surface pressure are considered for cross-validation evaluation, and the mean absolute percentage error is between 4% and 8% with the average prediction time not exceeding 2 ms. Finally, the proposed method and prediction models are validated by wind tunnel experimental data.

Research Article

Active Pointing Compensation of a HTS Multibeam Antenna

Active pointing compensation of a High Throughput Satellite (HTS) multibeam antenna via microfiber composites (MFCs) is studied in this paper. Electrical-mechanical coupling analysis of MFCs is conducted to quantitatively determine driving forces and moments of MFCs attached on a carbon fiber reinforced composite (CFRP) laminate, and a positive correlation relationship is observed for driving ability versus thickness of the laminate. By different driving strategies, MFCs could act in bending mode and torsioning mode for structural deformation control, and driving efficiency of the MFCs on a multibeam antenna is studied. Thermal distortion of the antenna under a typical in orbit thermal distribution causes the reflector to rotate about axis with an pointing error of 0.005°, active compensation is conducted, and the final compensation results show that with an optimal voltage of 432 V, pointing error of the antenna is greatly compensated, and the depointing angle is corrected to be 0.00004°.

Research Article

A New Theoretical Method for Solving Forward Kinematics of the Parallel Mechanisms Based on Transfer Matrix

The flexible parallel mechanism is widely utilized in precision instruments, thanks to its numerous advantages, such as high precision, frictionless operation, and seamless movements. The establishment of the motion equations for this mechanism is crucial for designing, analyzing, controlling, and simulating parallel mechanisms. While the existing inverse kinematics solution theory is comprehensive, developing a forward solution model is challenging due to the nonlinear nature of the attitude equation. To address this issue, a new method based on the transfer matrix approach is proposed in this research to calculate the forward kinematics of parallel mechanisms. The proposed method is applied to analyze the forward kinematics and workspace of both planar and spatial flexible mechanisms. Simulation calculations and experiments are conducted to verify the method’s effectiveness. The results demonstrate that the error is approximately 2%, indicating the feasibility and accuracy of the calculation method.

Research Article

A Dynamic Task Scheduling Algorithm for Airborne Device Clouds

The rapid development of mobile Internet has promoted the rapid rise of cloud computing technology. Mobile terminal devices have greatly expanded the service capacity of mobile terminals by migrating complex computing tasks to run in the cloud. However, in the process of data exchange between mobile terminals and cloud computing centers, on the one hand, it consumes the limited power of mobile terminals, and on the other hand, it results in longer communication time, which negatively affects user QoE. Mobile cloud can effectively improve user QoE by shortening the data transmission distance, reducing the power consumption, and shortening the communication time at the same time. In this paper, we utilize the property that genetic algorithm can perform global search seeking the global optimal solution and construct a dynamic task scheduling model by combining the device-cloud link. The task scheduling model based on genetic algorithm and random scheduling algorithm is compared through comparison experiments, which show that the assignment time of the task scheduling model based on genetic algorithm is shortened by 11.82% to 48.51% and the energy consumption is reduced by 22.28% to 47.52% under different load conditions.

International Journal of Aerospace Engineering
 Journal metrics
See full report
Acceptance rate31%
Submission to final decision108 days
Acceptance to publication20 days
CiteScore2.500
Journal Citation Indicator0.440
Impact Factor1.4
 Submit Check your manuscript for errors before submitting

Article of the Year Award: Impactful research contributions of 2022, as selected by our Chief Editors. Discover the winning articles.