International Journal of Aerospace Engineering http://www.hindawi.com The latest articles from Hindawi Publishing Corporation © 2016 , Hindawi Publishing Corporation . All rights reserved. Transport Aircraft Conceptual Design Optimization Using Real Coded Genetic Algorithm Wed, 25 May 2016 09:52:09 +0000 http://www.hindawi.com/journals/ijae/2016/2813541/ Due to soaring oil prices, increased air traffic and competition among air transport companies, and environmental concerns, aircraft maximum takeoff weight (MTOW) is becoming a critical aspect, of air transport industry. It is very important to estimate the MTOW of the aircraft in order to determine its performance. However, estimating the weight of an aircraft is not a simple task. The purpose of this paper is to present a simplified method to optimize the aircraft MTOW using a genetic algorithm approach. For the optimization of MTOW of transport aircraft, a MATLAB program consisting of genetic algorithm techniques with appropriate genetic algorithm parameters setting was developed. The objective function for the optimization was a minimization of MTOW. The use of genetic real coded algorithm (GA) as an optimization tool for an aircraft can help to reduce the number of qualitative decisions. Also, using GA approach, the time and the cost of conceptual design can considerably be reduced. The model is applicable to the air transport industry. The proposed model has been validated against the known configuration of an aircraft. Vedant Singh, Somesh K. Sharma, and S. Vaibhav Copyright © 2016 Vedant Singh et al. All rights reserved. Preliminary Design of a Small Unmanned Battery Powered Tailsitter Mon, 23 May 2016 08:54:48 +0000 http://www.hindawi.com/journals/ijae/2016/3570581/ This paper presents a preliminary design methodology for small unmanned battery powered tailsitters. Subsystem models, including takeoff weight, power and energy consumption models, and battery discharge model, were investigated, respectively. Feasible design space was given by simulation with mission and weight constraints, while the influences of wing loading and battery ratio were analyzed. Case study was carried out according to the design process, and the results were validated by previous designs. The design methodology can be used to determine key parameters and make necessary preparations for detailed design and vehicle realization of small battery powered tailsitters. Bo Wang, Zhongxi Hou, Zhaowei Liu, Qingyang Chen, and Xiongfeng Zhu Copyright © 2016 Bo Wang et al. All rights reserved. Fluid-Structure Interaction Analysis of Parachute Finite Mass Inflation Thu, 19 May 2016 06:31:43 +0000 http://www.hindawi.com/journals/ijae/2016/1438727/ Parachute inflation is coupled with sophisticated fluid-structure interaction (FSI) and flight mechanic behaviors in a finite mass situation. During opening, the canopy often experiences the largest deformation and loading. To predict the opening phase of a parachute, a computational FSI model for the inflation of a parachute, with slots on its canopy fabric, is developed using the arbitrary Lagrangian-Euler coupling penalty method. In a finite mass situation, the fluid around the parachute typically has an unsteady flow; therefore, a more complex opening phase and FSI dynamics of a parachute are investigated. Navier-Stokes (N-S) equations for uncompressible flow are solved using an explicit central difference method. The three-dimensional visualization of canopy deformation as well as the evolution of dropping velocity and overload is obtained and compared with the experimental results. This technique could be further applied in the airdrop test of a parachute for true prediction of the inflation characteristics. Xinglong Gao, Qingbin Zhang, and Qiangang Tang Copyright © 2016 Xinglong Gao et al. All rights reserved. Flow Characteristics Study of Wind Turbine Blade with Vortex Generators Thu, 12 May 2016 13:29:05 +0000 http://www.hindawi.com/journals/ijae/2016/6531694/ The blade root flow control is of particular importance to the aerodynamic characteristic of large wind turbines. The paper studies the feasibility of improving blade pneumatic power by applying vortex generators (VGs) to large variable propeller shaft horizontal axis wind turbines, with 2 MW variable propeller shaft horizontal axis wind turbine blades as research object. In the paper, three cases of VGs installation are designed; they are scattered in different chordwise position at the blade root, and then they are calculated, respectively, with CFD method. The results show that VGs installed in the separation line upstream, with the separation line of the blade root as a benchmark, show a better effect. Pneumatic power of blades increases by 0.6% by installing VGs. Although the effect on large wind turbines is not obvious, there is a space for optimization. Hao Hu, Xin-kai Li, and Bo Gu Copyright © 2016 Hao Hu et al. All rights reserved. Inverse Optimal Attitude Stabilization of Flexible Spacecraft with Actuator Saturation Tue, 26 Apr 2016 11:51:16 +0000 http://www.hindawi.com/journals/ijae/2016/1395952/ This paper presents a new robust inverse optimal control strategy for flexible spacecraft attitude maneuvers in the presence of external disturbances and actuator constraint. A new constrained attitude controller for flexible spacecraft is designed based on the Sontag-type formula and a control Lyapunov function. This control law optimizes a meaningful cost functional and the stability of the resulting closed-loop system is ensured by the Lyapunov framework. A sliding mode disturbance observer is used to compensate unknown bounded external disturbances. The ultimate boundedness of estimation error dynamics is guaranteed via a rigorous Lyapunov analysis. Simulation results are provided to demonstrate the performance of the proposed control law. Chutiphon Pukdeboon Copyright © 2016 Chutiphon Pukdeboon. All rights reserved. Receptivity of Boundary Layer over a Blunt Wedge due to Freestream Pulse Disturbances at Mach 6 Thu, 14 Apr 2016 07:48:23 +0000 http://www.hindawi.com/journals/ijae/2016/3196057/ Direct numerical simulation (DNS) of a hypersonic compressible flow over a blunt wedge with fast acoustic disturbances in freestream is performed. The receptivity characteristics of boundary layer to freestream pulse acoustic disturbances are numerically investigated at Mach 6, and the frequency effects of freestream pulse wave on boundary layer receptivity are discussed. Results show that there are several main disturbance mode clusters in boundary layer under acoustic pulse wave, and the number of main disturbance clusters decreases along the streamwise. As disturbance wave propagates from upstream to downstream direction, the component of the modes below fundamental frequency decreases, and the component of the modes above second harmonic components increases quickly in general. There are competition and disturbance energy transfer between different boundary layer modes. The nose boundary layer is dominated by the nearby mode of fundamental frequency. The number of the main disturbance mode clusters decreases as the freestream disturbance frequency increases. The frequency range with larger growth narrows along the streamwise. In general, the amplitudes of both fundamental mode and harmonics become larger with the decreasing of freestream disturbance frequency. High frequency freestream disturbance accelerates the decay of disturbance wave in downstream boundary layer. Jianqiang Shi, Xiaojun Tang, Zhenqing Wang, Mingfang Shi, and Wei Zhao Copyright © 2016 Jianqiang Shi et al. All rights reserved. Monte Carlo Uncertainty Quantification Using Quasi-1D SRM Ballistic Model Mon, 11 Apr 2016 16:03:13 +0000 http://www.hindawi.com/journals/ijae/2016/3765796/ Compactness, reliability, readiness, and construction simplicity of solid rocket motors make them very appealing for commercial launcher missions and embarked systems. Solid propulsion grants high thrust-to-weight ratio, high volumetric specific impulse, and a Technology Readiness Level of 9. However, solid rocket systems are missing any throttling capability at run-time, since pressure-time evolution is defined at the design phase. This lack of mission flexibility makes their missions sensitive to deviations of performance from nominal behavior. For this reason, the reliability of predictions and reproducibility of performances represent a primary goal in this field. This paper presents an analysis of SRM performance uncertainties throughout the implementation of a quasi-1D numerical model of motor internal ballistics based on Shapiro’s equations. The code is coupled with a Monte Carlo algorithm to evaluate statistics and propagation of some peculiar uncertainties from design data to rocker performance parameters. The model has been set for the reproduction of a small-scale rocket motor, discussing a set of parametric investigations on uncertainty propagation across the ballistic model. Davide Viganò, Adriano Annovazzi, and Filippo Maggi Copyright © 2016 Davide Viganò et al. All rights reserved. Study on Impedance Characteristics of Aircraft Cables Tue, 05 Apr 2016 14:05:49 +0000 http://www.hindawi.com/journals/ijae/2016/7430293/ Voltage decrease and power loss in distribution lines of aircraft electric power system are harmful to the normal operation of electrical equipment and may even threaten the safety of aircraft. This study investigates how the gap distance (the distance between aircraft cables and aircraft skin) and voltage frequency (variable frequency power supply will be adopted for next generation aircraft) will affect the impedance of aircraft cables. To be more precise, the forming mechanism of cable resistance and inductance is illustrated in detail and their changing trends with frequency and gap distance are analyzed with the help of electromagnetic theoretical analysis. An aircraft cable simulation model is built with Maxwell 2D and the simulation results are consistent with the conclusions drawn from the theoretical analysis. The changing trends of the four core parameters of interest are analyzed: resistance, inductance, reactance, and impedance. The research results can be used as reference for the applications in Variable Speed Variable Frequency (VSVF) aircraft electric power system. Weilin Li, Wenjie Liu, Xiaobin Zhang, Zhaohui Gao, Meng Xie, and Hongxia Wang Copyright © 2016 Weilin Li et al. All rights reserved. Adaptive Flutter Suppression for a Fighter Wing via Recurrent Neural Networks over a Wide Transonic Range Tue, 05 Apr 2016 11:44:36 +0000 http://www.hindawi.com/journals/ijae/2016/7673146/ The paper presents a digital adaptive controller of recurrent neural networks for the active flutter suppression of a wing structure over a wide transonic range. The basic idea behind the controller is as follows. At first, the parameters of recurrent neural networks, such as the number of neurons and the learning rate, are initially determined so as to suppress the flutter under a specific flight condition in the transonic regime. Then, the controller automatically adjusts itself for a new flight condition by updating the synaptic weights of networks online via the real-time recurrent learning algorithm. Hence, the controller is able to suppress the aeroelastic instability of the wing structure over a range of flight conditions in the transonic regime. To demonstrate the effectiveness and robustness of the controller, the aeroservoelastic model of a typical fighter wing with a tip missile was established and a single-input/single-output controller was synthesized. Numerical simulations of the open/closed-loop aeroservoelastic simulations were made to demonstrate the efficacy of the adaptive controller with respect to the change of flight parameters in the transonic regime. Haojie Liu, Yonghui Zhao, and Haiyan Hu Copyright © 2016 Haojie Liu et al. All rights reserved. Integrated Power and Attitude Control Design of Satellites Based on a Fuzzy Adaptive Disturbance Observer Using Variable-Speed Control Moment Gyros Wed, 23 Mar 2016 08:29:13 +0000 http://www.hindawi.com/journals/ijae/2016/7105413/ To satisfy the requirements for small satellites that seek agile slewing with peak power, this paper investigates integrated power and attitude control using variable-speed control moment gyros (VSCMGs) that consider the mass and inertia of gimbals and wheels. The paper also details the process for developing the controller by considering various environments in which the controller may be implemented. A fuzzy adaptive disturbance observer (FADO) is proposed to estimate and compensate for the effects of equivalent disturbances. The algorithms can simultaneously track attitude and power. The simulation results illustrate the effectiveness of the control approach, which exhibits an improvement of 80 percent compared with alternate approaches that do not employ a FADO. Zhongyi Chu and Jing Cui Copyright © 2016 Zhongyi Chu and Jing Cui. All rights reserved. A Simplified Mobile Ad Hoc Network Structure for Helicopter Communication Tue, 08 Mar 2016 09:42:48 +0000 http://www.hindawi.com/journals/ijae/2016/2132941/ There are a number of volunteer and statutory organizations who are capable of conducting an emergency response using helicopters. Rescue operations require a rapidly deployable high bandwidth network to coordinate necessary relief efforts between rescue teams on the ground and helicopters. Due to massive destruction and loss of services, ordinary communication infrastructures may collapse in these situations. Consequently, information exchange becomes one of the major challenges in these circumstances. Helicopters can be also employed for providing many services in rugged environments, military applications, and aerial photography. Ad hoc network can be used to provide alternative communication link between a set of helicopters, particularly in case of significant amount of data required to be shared. This paper addresses the ability of using ad hoc networks to support the communication between a set of helicopters. A simplified network structure model is presented and extensively discussed. Furthermore, a streamlined routing algorithm is proposed. Comprehensive simulations are conducted to evaluate the proposed routing algorithm. Abdeldime Mohamed Salih Abdelgader, Lenan Wu, and Mohammed Mohsen Mohammed Nasr Copyright © 2016 Abdeldime Mohamed Salih Abdelgader et al. All rights reserved. Time-Varying Biased Proportional Guidance with Seeker’s Field-of-View Limit Tue, 01 Mar 2016 09:28:07 +0000 http://www.hindawi.com/journals/ijae/2016/9272019/ Traditional guidance laws with range-to-go information or time-to-go estimation may not be implemented in passive homing missiles since passive seekers cannot measure relative range directly. A time-varying biased proportional guidance law, which only uses line-of-sight (LOS) rate and look angle information, is proposed to satisfy both impact angle constraint and seeker’s field-of-view (FOV) limit. In the proposed guidance law, two time-varying bias terms are applied to divide the trajectory into initial phase and terminal phase. The initial bias is designed as a function of LOS rate and look angle to maintain the seeker’s lock-on while the final bias eliminates the deviation between the integral value of angle control bias and the expected bias amount. A switching logic is adopted to change the biases continuously so that there is no abrupt acceleration change during the engagement. Extensive simulations considering both kinematic and realistic missile models are performed to illustrate the efficiency of the proposed method. Zhe Yang, Hui Wang, and Defu Lin Copyright © 2016 Zhe Yang et al. All rights reserved. Online Adaptive Error Compensation SVM-Based Sliding Mode Control of an Unmanned Aerial Vehicle Thu, 25 Feb 2016 16:50:40 +0000 http://www.hindawi.com/journals/ijae/2016/8407491/ Unmanned Aerial Vehicle (UAV) is a nonlinear dynamic system with uncertainties and noises. Therefore, an appropriate control system has an obligation to ensure the stabilization and navigation of UAV. This paper mainly discusses the control problem of quad-rotor UAV system, which is influenced by unknown parameters and noises. Besides, a sliding mode control based on online adaptive error compensation support vector machine (SVM) is proposed for stabilizing quad-rotor UAV system. Sliding mode controller is established through analyzing quad-rotor dynamics model in which the unknown parameters are computed by offline SVM. During this process, the online adaptive error compensation SVM method is applied in this paper. As modeling errors and noises both exist in the process of flight, the offline SVM one-time mode cannot predict the uncertainties and noises accurately. The control law is adjusted in real-time by introducing new training sample data to online adaptive SVM in the control process, so that the stability and robustness of flight are ensured. It can be demonstrated through the simulation experiments that the UAV that joined online adaptive SVM can track the changing path faster according to its dynamic model. Consequently, the proposed method that is proved has the better control effect in the UAV system. Kaijia Xue, Congqing Wang, Zhiyu Li, and Hanxin Chen Copyright © 2016 Kaijia Xue et al. All rights reserved. A Fault-Tolerant Multiple Sensor Fusion Approach Applied to UAV Attitude Estimation Wed, 24 Feb 2016 13:32:40 +0000 http://www.hindawi.com/journals/ijae/2016/6217428/ A novel sensor fusion design framework is presented with the objective of improving the overall multisensor measurement system performance and achieving graceful degradation following individual sensor failures. The Unscented Information Filter (UIF) is used to provide a useful tool for combining information from multiple sources. A two-step off-line and on-line calibration procedure refines sensor error models and improves the measurement performance. A Fault Detection and Identification (FDI) scheme crosschecks sensor measurements and simultaneously monitors sensor biases. Low-quality or faulty sensor readings are then rejected from the final sensor fusion process. The attitude estimation problem is used as a case study for the multiple sensor fusion algorithm design, with information provided by a set of low-cost rate gyroscopes, accelerometers, magnetometers, and a single-frequency GPS receiver’s position and velocity solution. Flight data collected with an Unmanned Aerial Vehicle (UAV) research test bed verifies the sensor fusion, adaptation, and fault-tolerance capabilities of the designed sensor fusion algorithm. Yu Gu, Jason N. Gross, Matthew B. Rhudy, and Kyle Lassak Copyright © 2016 Yu Gu et al. All rights reserved. Unmanned Aerial Vehicles for Photogrammetry: Analysis of Orthophoto Images over the Territory of Lithuania Mon, 22 Feb 2016 10:08:41 +0000 http://www.hindawi.com/journals/ijae/2016/4141037/ It has been recently observed that aircrafts tend to be replaced by light, simple structure unmanned aerial vehicles (UAV) or mini unmanned aerial vehicles (MUAV) with the purpose of updating the field of aerial photogrammetry. The built-in digital photo camera takes images of the Earth’s surface. To satisfy the photogrammetric requirements of the photographic images, it is necessary to carry out the terrestrial project planning of the flight path before the flight, to select the appropriate flying height, the time for acquiring images, the speed of the UAV, and other parameters. The paper presents the results of project calculations concerning the UAV flights and the analysis of the terrestrial images acquired during the field-testing flights. The experience carried out so far in the Lithuanian landscape is shown. The taken images have been processed by PhotoMod photogrammetric system. The paper presents the results of calculation of the project values of the UAV flights taking the images by digital camera Canon S100 and the analysis of the possibilities of the UAV orthophoto images’ mode. J. Suziedelyte Visockiene, R. Puziene, A. Stanionis, and E. Tumeliene Copyright © 2016 J. Suziedelyte Visockiene et al. All rights reserved. Modeling of Particle Trajectory and Erosion of Large Rotor Blades Sun, 21 Feb 2016 12:19:39 +0000 http://www.hindawi.com/journals/ijae/2016/7928347/ When operating in hostile environments, engines components are facing a serious problem of erosion, leading to a drastic drop in aerodynamic performance and life-cycle. This paper outlines the modeling and simulation of particle trajectory and erosion induced by sand particles. The governing equations of particle dynamics through the moving of large rotor blades are introduced and solved separately from the flow field by using our in-house particle tracking code based on the finite element method. As the locations of impacts are predicted, the erosion is assessed by semiempirical correlations in terms of impact conditions and particle and target surface characteristics. The results of these computations carried out for different concentrations of suspended dust (sand) cloud generated at takeoff conditions reveal the main areas of impacts with high rates of erosion seen over a large strip from the blade suction side, around the leading edge and the pressure side of blade. The assessment of the blade geometry deterioration reveals that the upper corner of blade suffers from an intense erosion wear. Adel Ghenaiet Copyright © 2016 Adel Ghenaiet. All rights reserved. Trajectory Optimization for Velocity Jumps Reduction considering the Unexpectedness Characteristics of Space Manipulator Joint-Locked Failure Sun, 21 Feb 2016 10:07:21 +0000 http://www.hindawi.com/journals/ijae/2016/7819540/ Aiming at reducing joint velocity jumps caused by an unexpected joint-locked failure during space manipulator on-orbit operations without shutting down manipulator, trajectory optimization strategy considering the unexpectedness characteristics of joint-locked failure is proposed in the paper, which can achieve velocity jumps reduction in both operation space and joint space simultaneously. In the strategy, velocity in operation space concerning task completion directly is treated as equality constraints, and velocity in joint space concerning motion performance is treated as objective function. Global compensation vector which consists of coefficient, gradient of manipulability, and orthogonal matrix of null space is constructed to minimize the objective function. For each particular failure time, unique optimal coefficient can be obtained when the objective function is minimal. As a basis, a method for optimal coefficient function fitting is proposed based on a priori failure information (possible failure time and the corresponding optimal coefficient) to guarantee the unexpectedness characteristics of joint-locked failure. Simulations are implemented to validate the efficiency of trajectory optimization strategy in reducing velocity jumps in both joint space and operation space. And the feasibility of coefficient function is also verified in reducing velocity jump no matter when joint-locked failure occurs. Qingxuan Jia, Tong Li, Gang Chen, Hanxu Sun, and Jian Zhang Copyright © 2016 Qingxuan Jia et al. All rights reserved. Evaluation of the Mechanical Properties of Microcapsule-Based Self-Healing Composites Tue, 16 Feb 2016 12:55:46 +0000 http://www.hindawi.com/journals/ijae/2016/7817962/ Self-healing materials are beginning to be considered for applications in the field of structural materials. For this reason, in addition to self-healing efficiency, also mechanical properties such as tensile and compressive properties are beginning to become more and more important for this kind of materials. In this paper, three different systems based on epoxy-resins/ethylidene-norbornene (ENB)/Hoveyda-Grubbs 1st-generation (HG1) catalyst are investigated in terms of mechanical properties and healing efficiency. The experimental results show that the mechanical properties of the self-healing systems are mainly determined by the chemical nature of the epoxy matrix. In particular, the replacement of a conventional flexibilizer (Heloxy 71) with a reactive diluent (1,4-butanediol diglycidyl ether) allows obtaining self-healing materials with better mechanical properties and higher thermal stability. An increase in the curing temperature causes an increase in the elastic modulus and a slight reduction of the healing efficiency. These results can constitute the basis to design systems with high regenerative ability and appropriate mechanical performance. Liberata Guadagno, Marialuigia Raimondo, Umberto Vietri, Carlo Naddeo, Anja Stojanovic, Andrea Sorrentino, and Wolfgang H. Binder Copyright © 2016 Liberata Guadagno et al. All rights reserved. Precise Orbit Determination of BDS MEO Satellites Based on Satellite TT&C Stations Mon, 15 Feb 2016 09:59:25 +0000 http://www.hindawi.com/journals/ijae/2016/7856353/ A novel method, which is based on the triple-frequency combination and Space-Based Telemetry, Tracking, and Command (STT&C) stations, is proposed in this paper. Considering BeiDou Navigation Satellite System (BDS) Geostationary Orbit (GEO) and Inclined Geostationary Orbit (IGSO) satellites as the STT&C facilities, firstly, we presented the BDS Medium Earth Orbit (MEO) satellites’ precise orbit determination scheme based on triple-frequency combination. Then, we gave the sufficient and necessary conditions about the visibility and the coverage rate calculation model of STT&C to BDS MEO satellite. And then we deduced the model of BDS MEO satellites precise orbit determination based on triple-frequency combination observations. At last, we designed the simulation calculation. The simulation results show that orbit determination of BDS MEO satellite based on STT&C station can be realized at all times. And most of the simulation period time, under the condition of the dm level orbit determination for GEO/IGSO satellites, the position accuracy of the relative orbit determination is better than 4 m, the horizontal accuracy of the relative orbit determination is within 2.5 m, and the vertical accuracy of the relative orbit determination is less than 3.5 m. Kezhao Li, Zhiwei Li, Lin Chai, An-min Ding, Jin-ben Wei, and Long Li Copyright © 2016 Kezhao Li et al. All rights reserved. Effects of Duct Cross Section Camber and Thickness on the Performance of Ducted Propulsion Systems for Aeronautical Applications Tue, 09 Feb 2016 14:20:19 +0000 http://www.hindawi.com/journals/ijae/2016/8913901/ The axisymmetric flow field around a ducted rotor is thoroughly analysed by means of a nonlinear and semi-analytical model which is able to deal with some crucial aspects of shrouded systems like the interaction between the rotor and the duct, and the slipstream contraction and rotation. Not disregarding the more advanced CFD based methods, the proposed procedure is characterised by a very low computational cost that makes it very appealing as analysis tool in the preliminary steps of a design procedure of hierarchical type. The work focuses on the analysis of the effects of the camber and thickness of the duct cross section onto the performance of the device. It has been found that an augmentation of both camber and thickness of the duct leads to an increase of the propulsive ideal efficiency. Rodolfo Bontempo and Marcello Manna Copyright © 2016 Rodolfo Bontempo and Marcello Manna. All rights reserved. Aero Engine Fault Diagnosis Using an Optimized Extreme Learning Machine Tue, 26 Jan 2016 13:20:06 +0000 http://www.hindawi.com/journals/ijae/2016/7892875/ A new extreme learning machine optimized by quantum-behaved particle swarm optimization (QPSO) is developed in this paper. It uses QPSO to select optimal network parameters including the number of hidden layer neurons according to both the root mean square error on validation data set and the norm of output weights. The proposed Q-ELM was applied to real-world classification applications and a gas turbine fan engine diagnostic problem and was compared with two other optimized ELM methods and original ELM, SVM, and BP method. Results show that the proposed Q-ELM is a more reliable and suitable method than conventional neural network and other ELM methods for the defect diagnosis of the gas turbine engine. Xinyi Yang, Shan Pang, Wei Shen, Xuesen Lin, Keyi Jiang, and Yonghua Wang Copyright © 2016 Xinyi Yang et al. All rights reserved. Triangle Interception Scenario: A Finite-Time Guidance Approach Sun, 24 Jan 2016 14:16:19 +0000 http://www.hindawi.com/journals/ijae/2016/2942686/ Considering an aircraft threatened by an interceptor, one of the effective penetration strategies is to release a Defender from the aircraft to confront the interceptor. In this case, the aircraft, the Defender, and the interceptor constitute the three-body guidance relationship, and the cooperation of the aircraft and its Defender to achieve the best tactical effects turns into a concerned problem. This paper studies the triangle interception guidance problem via the finite-time theory. The paper presents linear system Input-Output Finite-Time Stabilization (IO-FTS) method. The sufficient conditions of the linear system, being IO-FTS, under Finite-Time Boundedness (FTB) constraint are proposed, by which the state feedback controllers design method is obtained, via Linear Matrix Inequalities (LMIs). The triangle interception guidance problems are studied in three different cases, where the proposed methods are applied to the guidance design. The simulation results illustrate the effectiveness of the proposed methods. Yang Guo, Xiaoxiang Hu, Fenghua He, Hongjie Cheng, and Qinhe Gao Copyright © 2016 Yang Guo et al. All rights reserved. Projection-Based Adaptive Backstepping Control of a Transport Aircraft for Heavyweight Airdrop Thu, 31 Dec 2015 09:57:45 +0000 http://www.hindawi.com/journals/ijae/2015/538901/ An autopilot inner loop that combines backstepping control with adaptive function approximation is developed for airdrop operations. The complex nonlinear uncertainty of the aircraft-cargo model is factorized into a known matrix and an uncertainty function, and a projection-based adaptive approach is proposed to estimate this function. Using projection in the adaptation law bounds the estimated function and guarantees the robustness of the controller against time-varying external disturbances and uncertainties. The convergence properties and robustness of the control method are proved via Lyapunov theory. Simulations are conducted under the condition that one transport aircraft performs a maximum load airdrop task at a height of 82 ft, using single row single platform mode. The results show good performance and robust operation of the controller, and the airdrop mission performance indexes are satisfied, even in the presence of ±15% uncertainty in the aerodynamic coefficients, ±0.01 rad/s pitch rate disturbance, and 20% actuators faults. Ri Liu, Xiuxia Sun, Wenhan Dong, and Guangzhi Xu Copyright © 2015 Ri Liu et al. All rights reserved. Numerical Simulation of Oil Jet Lubrication for High Speed Gears Wed, 30 Dec 2015 11:46:07 +0000 http://www.hindawi.com/journals/ijae/2015/752457/ The Geared Turbofan technology is one of the most promising engine configurations to significantly reduce the specific fuel consumption. In this architecture, a power epicyclical gearbox is interposed between the fan and the low pressure spool. Thanks to the gearbox, fan and low pressure spool can turn at different speed, leading to higher engine bypass ratio. Therefore the gearbox efficiency becomes a key parameter for such technology. Further improvement of efficiency can be achieved developing a physical understanding of fluid dynamic losses within the transmission system. These losses are mainly related to viscous effects and they are directly connected to the lubrication method. In this work, the oil injection losses have been studied by means of CFD simulations. A numerical study of a single oil jet impinging on a single high speed gear has been carried out using the VOF method. The aim of this analysis is to evaluate the resistant torque due to the oil jet lubrication, correlating the torque data with the oil-gear interaction phases. URANS calculations have been performed using an adaptive meshing approach, as a way of significantly reducing the simulation costs. A global sensitivity analysis of adopted models has been carried out and a numerical setup has been defined. Tommaso Fondelli, Antonio Andreini, Riccardo Da Soghe, Bruno Facchini, and Lorenzo Cipolla Copyright © 2015 Tommaso Fondelli et al. All rights reserved. Optimization of Trajectory Correction Scheme for Guided Mortar Projectiles Tue, 29 Dec 2015 13:01:20 +0000 http://www.hindawi.com/journals/ijae/2015/618458/ Guidance with traditional trajectory correction scheme usually starts from the trajectory apex time to reduce drag penalties early in flight; however, this method cannot get the max trajectory correction capability of canards according to our analysis. This paper presents an optimized trajectory correction scheme by taking different control phases of canards in ballistic ascending segment and ballistic descending segment. Simulation indicates that the optimized trajectory correction can improve the trajectory correction capability greatly. The result of an example trajectory and Monte Carlo simulations with the predictive guidance law and the trajectory tracking guidance law testifies the effectiveness of the optimized trajectory correction scheme. Yongwei Zhang, Min Gao, Suochang Yang, and Dan Fang Copyright © 2015 Yongwei Zhang et al. All rights reserved. Effects of Asymmetries on the Dynamics of Motorized Momentum Exchange Tether and Payloads Injection Precision Tue, 29 Dec 2015 12:39:10 +0000 http://www.hindawi.com/journals/ijae/2015/468482/ This paper presents the error dynamic model of motorized momentum exchange tether (MMET) based on the momentum exchange principle of space tether. The error dynamics are caused by the structural bias of the differences in tethers’ length and the difference in payloads’ mass. After that, the coupling analysis between orbit and attitude is presented. It is shown that, with increasing the differences in tethers’ length and payloads’ mass, the COM deviation of the MMET increases linearly. The numerical simulations of the MMET by considering the structural asymmetries are presented; the results show that the asymmetries have tiny influences on the orbit of the chief satellite by decreasing the apogee, which will change the instantaneous velocity at the apogee and affect the payload injection precision. What is more, the structural asymmetries have effects on the attitude elements (including the pitch angle and yaw angle); however, the effects could be weakened by the external torque. The structural asymmetries and gravity gradient torque have composite effects on the angular velocity of the propulsion tether. Naiming Qi, Yong Yang, Jun Zhao, Qilong Sun, and Wenhui Zhang Copyright © 2015 Naiming Qi et al. All rights reserved. Prediction of Conducted Emissions in Satellite Power Buses Thu, 24 Dec 2015 15:13:56 +0000 http://www.hindawi.com/journals/ijae/2015/601426/ This work reports a modeling methodology for the prediction of conducted emissions (CE) in a wide frequency range (up to 100 MHz), which are generated by dc/dc converters and propagate along the power buses of satellites. In particular, the dc/dc converter seen as a source of CE is represented by a behavioral model, whose parameters can be identified by two unit-level experimental procedures performed in controlled test setups. A simplified multiconductor transmission-line (MTL) model is developed to account for the propagation of CE in shielded bundles of twisted-wire pairs used as power cables. The whole power system is represented by the interconnection of the circuit models of dc/dc converters, cables, and Power Conditioning and Distribution Unit (PCDU). By solving the obtained network, frequency spectra of CE can be predicted. Experimental results are reported to substantiate the accuracy of the proposed unit-level dc/dc converter model and the MTL model of cables. Finally, a system-level test setup composed of three dc/dc converters connected to a PCDU is considered, and predicted CE are compared versus experimental measurements. Giordano Spadacini, Flavia Grassi, Diego Bellan, Sergio A. Pignari, and Filippo Marliani Copyright © 2015 Giordano Spadacini et al. All rights reserved. Low-Thrust Transfer Design of Low-Observable Geostationary Earth Orbit Satellite Tue, 22 Dec 2015 06:42:01 +0000 http://www.hindawi.com/journals/ijae/2015/439815/ With radar and surface-to-air missiles posing an increasing threat to on-orbit spacecraft, low-observable satellites play an important role in low-thrust transfers. This paper presents the design for a low-thrust geostationary earth orbit (GEO) transfer control strategy which takes into consideration the low-observable constraint and discusses Earth shadow and perturbation. A control parameter optimization addresses the orbit transfer problem, and five thrust modes are used. Simulation results show that the method outlined in this paper is simple and feasible and results in reduced transfer time with a small amount of calculation. The method therefore offers a useful reference for low-thrust GEO transfer design. Bing Hua and Zhujun Shao Copyright © 2015 Bing Hua and Zhujun Shao. All rights reserved. Iterative Learning Control of a Nonlinear Aeroelastic System despite Gust Load Sun, 20 Dec 2015 09:56:17 +0000 http://www.hindawi.com/journals/ijae/2015/237804/ The development of a control strategy appropriate for the suppression of aeroelastic vibration of a two-dimensional nonlinear wing section based on iterative learning control (ILC) theory is described. Structural stiffness in pitch degree of freedom is represented by nonlinear polynomials. The uncontrolled aeroelastic model exhibits limit cycle oscillations beyond a critical value of the free-stream velocity. Using a single trailing-edge control surface as the control input, a ILC law under alignment condition is developed to ensure convergence of state tracking error. A novel Barrier Lyapunov Function (BLF) is incorporated in the proposed Barrier Composite Energy Function (BCEF) approach. Numerical simulation results clearly demonstrate the effectiveness of the control strategy toward suppressing aeroelastic vibration in the presence of parameter uncertainties and triangular, sinusoidal, and graded gust loads. Xing-zhi Xu, Ya-kui Gao, and Wei-guo Zhang Copyright © 2015 Xing-zhi Xu et al. All rights reserved. Drag Reduction of a Turbulent Boundary Layer over an Oscillating Wall and Its Variation with Reynolds Number Mon, 14 Dec 2015 09:33:27 +0000 http://www.hindawi.com/journals/ijae/2015/891037/ Spanwise oscillation applied on the wall under a spatially developing turbulent boundary layer flow is investigated using direct numerical simulation. The temporal wall forcing produces a considerable drag reduction over the region where oscillation occurs. Downstream development of drag reduction is investigated from Reynolds number dependency perspective. An alternative to the previously suggested power-law relation between Reynolds number and peak drag reduction values, which is valid for channel flow as well, is proposed. Considerable deviation in the variation of drag reduction with Reynolds number between different previous investigations of channel flow is found. The shift in velocity profile, which has been used in the past for explaining the diminishing drag reduction at higher Reynolds number for riblets, is investigated. A new predictive formula is derived, replacing the ones found in the literature. Furthermore, unlike for the case of riblets, the shift is varying downstream in the case of wall oscillations, which is a manifestation of the fact that the boundary layer has not reached a new equilibrium over the limited downstream distance in the simulations. Taking this into account, the predictive model agrees well with DNS data. On the other hand, the growth of the boundary layer does not influence the drag reduction prediction. Martin Skote, Maneesh Mishra, and Yanhua Wu Copyright © 2015 Martin Skote et al. All rights reserved.