About this Journal Submit a Manuscript Table of Contents
International Journal of Antennas and Propagation
Volume 2012 (2012), Article ID 425919, 8 pages
http://dx.doi.org/10.1155/2012/425919
Research Article

Elevated CPW-Fed Slotted Microstrip Antenna for Ultra-Wideband Application

1Department of Electronics and Communication Engineering, Dr. B. C. Roy Engineering College, Jemua Road, Fuljhore, Durgapur 713206, India
2Department of Electronics and Communication Engineering, Bengal Engineering and Science University, Shibpur, Howrah 711103, India

Received 8 June 2012; Revised 17 August 2012; Accepted 8 September 2012

Academic Editor: Karu P. Esselle

Copyright © 2012 Chandan Kumar Ghosh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. D. McKinney and A. M. Weiner, “Compensation of the effects of antenna dispersion on UWB waveforms via optical pulse-shaping techniques,” IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 4, pp. 1681–1686, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. “FCC first report and order on ultra-wideband technology,” 2002.
  3. K. Y. Yazdandoost and R. Kohno, “Ultra wideband antenna,” IEEE Communications Magazine, vol. 42, no. 6, pp. S29–S32, 2004. View at Scopus
  4. A. C. Shagar and R. S. D. Wahidabanu, “New design of CPW-fed rectangular slot antenna for ultra wideband applications,” International Journal of Electronics Engineering, vol. 2, no. 1, pp. 69–73, 2010.
  5. S. Barbarino and F. Consoli, “Study on UWB and SWB planar slot antennas with different stub shapes,” Microwave and Optical Technology Letters, vol. 53, no. 7, pp. 1528–1532, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Ranga, K. P. Esselle, and A. R. Weily, “Compact ultra-wideband CPW-fed printed semicircular slot antenna,” Microwave and Optical Technology Letters, vol. 52, no. 10, pp. 2367–2372, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Parkash and R. Khanna, “A compact wideband CPW fed hash-shape slot monopole antenna for wireless communication applications,” Journal of Punjab Academy of Sciences, vol. 5-6, pp. 5–9, 2010.
  8. Y. F. Ruan, Y. X. Guo, K. W. Khoo, and X. Q. Shi, “Compact wideband antenna for wireless communications,” IET Microwaves, Antennas and Propagation, vol. 1, no. 3, pp. 556–560, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. T. G. Ma and C. H. Tseng, “An ultrawideband coplanar waveguide-fed tapered ring slot antenna,” IEEE Transactions on Antennas and Propagation, vol. 54, no. 4, pp. 1105–1110, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Hu, H. Chen, C. L. Law et al., “Backscattering cross section of ultrawideband antennas,” IEEE Antennas and Wireless Propagation Letters, vol. 6, pp. 70–73, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. M. A. Peyrot-Solis, G. M. Galvan-Tejada, and H. Jardon-Aguilar, “State of the art in ultra-wideband antennas,” in Proceedings of the 2nd International Conference on Electrical and Electronics Engineering (ICEEE '05) and 11th Conference on Electrical Engineering (CIE '05), pp. 101–105, Mexico City, Mexico, September 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. M. T. Islam, M. N. Shakib, and N. Misran, “Broadband E-H shaped microstrip patch antenna for wireless systems,” Progress in Electromagnetics Research, vol. 98, pp. 163–173, 2009. View at Scopus
  13. K. P. Ray and Y. Ranga, “Ultrawideband printed elliptical monopole antennas,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 4, pp. 1189–1192, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. J. I. Kim and Y. Jee, “Design of ultrawideband coplanar waveguide-fed Li-shape planar monopole antennas,” IEEE Antennas and Wireless Propagation Letters, vol. 6, pp. 383–387, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. M. A. Peyrot-Solis, J. A. Tirado-Mendez, and H. Jardon-Aguilar, “Design of multiband UWB planarized monopole using DMS technique,” IEEE Antennas and Wireless Propagation Letters, vol. 6, pp. 77–79, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. H. M. Jafari, M. J. Deen, S. Hranilovic, and N. K. Nikolova, “A study of ultrawideband antennas for near-field imaging,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 4, pp. 1184–1188, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. T. N. Chang and J. H. Jiang, “Meandered T-shaped monopole antenna,” IEEE Transactions on Antennas and Propagation, vol. 57, no. 12, pp. 3976–3978, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. T. H. Kim and D. C. Park, “CPW-fed compact monopole antenna for dual-band WLAN applications,” Electronics Letters, vol. 41, no. 6, pp. 291–293, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. W. C. Liu, “Broadband dual-frequency CPW-FED antenna with a cross-shaped feeding line for WLAN application,” Microwave and Optical Technology Letters, vol. 49, no. 7, pp. 1739–1744, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. W. C. Liu, “Broadband dual-frequency cross-shaped slot CPW-FED monopole antenna for wlan operation,” Microwave and Optical Technology Letters, vol. 46, no. 4, pp. 353–355, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. C. Lee, S. C. Lin, and J. S. Sun, “CPW-fed UWB slot antenna,” in Proceedings of the 2006 Asia-Pacific Microwave Conference (APMC '06), pp. 1636–1639, December 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. M. A. Saed, “Broadband CPW-fed planar slot antennas with various tuning stubs,” Progress in Electromagnetics Research, vol. 66, pp. 199–212, 2006. View at Scopus
  23. J. Wang, H. Zhang, W.-H. Chen, and C. Sheng, “Design and application of a novel CB-CPW structure,” Progress in Electromagnetics Research, vol. 4, pp. 133–142, 2008.
  24. K. Hettak, M. G. Stubbs, K. Elgaid, and I. G. Thaine, “Design and characterization of elevated CPW and thin film microstrip structures for millimeter-wave applications,” in Proceedings of the European Microwave Conference, vol. 2, p. 4, Paris, France, 2005.
  25. F. Aghamoradi, I. McGregor, and K. Elgaid, “Performance enhancement of millimetre-wave resonators using elevated CPW,” Electronics Letters, vol. 45, no. 25, pp. 1326–1328, 2009.
  26. S. Lee, S. Jung, and H. Y. Lee, “Ultra-wideband CPW-to-substrate integrated waveguide transition using an elevated-CPW section,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 11, pp. 746–748, 2008.
  27. M. Forman and Z. Popovic, “A K-band ground-backed CPW balanced coupler and integrated antenna feed,” in Proceedings of the European Microwave Conference, October 2000.
  28. S. Hofschen and I. Wolff, “Simulation of an elevated coplanar waveguide using 2-D FDTD,” IEEE Microwave and Guided Wave Letters, vol. 6, no. 1, pp. 28–30, 1996. View at Scopus
  29. I. McGregor, F. Aghamoradi, and K. Elgaid, “An approximate analytical model for the quasi-static parameters of elevated CPW lines,” IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 12, pp. 3809–3814, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Aghamoradi, I. McGregor, and K. Elgaid, “Performance enhancement of millimetre-wave resonators using elevated CPW,” Electronics Letters, vol. 45, no. 25, pp. 1326–1328, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. S. H. Jeong, S. J. Yoon, J. G. Yook, S. G. Lee, and Y. J. Kim, “Elevated-CPW for high-speed digital interconnects,” in Proceedings of the IEEE Antennas and Propagation Society International Symposium, pp. 541–544, usa, July 2001. View at Scopus
  32. IE3D User's Manual, Release 11, Zeland Software, Inc., Fremont,Calif, USA, 2005.
  33. K. P. Ray and Y. Ranga, “Printed rectangular monopole antennas,” in Proceedings of the IEEE Antennas and Propagation Society International Symposium (APS '06), pp. 1693–1696, July 2006. View at Publisher · View at Google Scholar · View at Scopus