About this Journal Submit a Manuscript Table of Contents
International Journal of Antennas and Propagation
Volume 2012 (2012), Article ID 592842, 7 pages
http://dx.doi.org/10.1155/2012/592842
Research Article

Surface Plasmon-Enhanced Nanoantenna for Localized Fluorescence

Department of Electrical and Electronics Engineering, Yeditepe University, 34755 Istanbul, Turkey

Received 6 September 2012; Revised 5 December 2012; Accepted 6 December 2012

Academic Editor: Cheng Wei Qiu

Copyright © 2012 Isa Kocakarin and Korkut Yegin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Muehlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science, vol. 308, pp. 1607–1609.
  2. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Advances in Optics and Photonics, vol. 1, pp. 438–483, 2009.
  3. L. Novotny and N. F. van Hulst, “Antennas for light,” Nature Photonics, vol. 5, no. 2, pp. 83–90, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. V. Giannini, A. I. Fernandez-Dominguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chemical Reviews, vol. 111, pp. 3888–3912, 2011.
  5. L. Cao, J. S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Letters, vol. 10, no. 4, pp. 1229–1233, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Physical Review Letters, vol. 95, no. 1, Article ID 017402, 4 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Gevaux, “Nano-antenna picks up green light,” Nature Photonics, vol. 1, p. 90, 2007.
  8. L. Novotny, “Nano-optics: optical antennas tuned to pitch,” Nature, vol. 455, no. 7215, p. 887, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science, vol. 311, no. 5758, pp. 189–193, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. D. P. Fromm, A. Sundaramurthy, P. James Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Letters, vol. 4, no. 5, pp. 957–961, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Letters, vol. 6, no. 3, pp. 361–364, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Letters, vol. 6, no. 3, pp. 355–360, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Physical Review Letters, vol. 96, no. 11, Article ID 113002, 4 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Applied Physics Letters, vol. 90, no. 11, Article ID 111107, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Physical Review, vol. 69, p. 681, 1946.
  16. R. R. Chance, A. Prock, and R. Silbey, “Molecular fuorescence and energy transfer near interfaces,” Advances in Chemical Physics, vol. 37, p. 1, 1978. View at Publisher · View at Google Scholar
  17. L. A. Blanco and F. J. García de Abajo, “Spontaneous light emission in complex nanostructures,” Physical Review B, vol. 69, no. 20, Article ID 205414, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. R. G. Hulet, E. S. Hilfer, and D. Kleppner, “Inhibited spontaneous emission by a Rydberg atom,” Physical Review Letters, vol. 55, no. 20, pp. 2137–2140, 1985. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Optics Letters, vol. 32, no. 12, pp. 1623–1625, 2007. View at Scopus
  20. A. Mohammadi, V. Sandoghdar, and M. Agio, “Gold nanorods and nanospheroids for enhancing spontaneous emission,” New Journal of Physics, vol. 10, Article ID 105015, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Novotny and S. J. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Annual Review of Physical Chemistry, vol. 57, pp. 303–331, 2006. View at Publisher · View at Google Scholar
  22. J. Wessel, “Surface-enhanced optical microscopy,” Journal of the Optical Society of America B, vol. 2, pp. 1538–1540, 1985. View at Publisher · View at Google Scholar
  23. H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Physical Review Letters, vol. 93, no. 20, Article ID 200801, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” Journal of Applied Physics, vol. 94, no. 7, pp. 4632–4642, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” Journal of Modern Optics, vol. 45, pp. 661–699, 1998. View at Publisher · View at Google Scholar
  26. E. Fort and S. Gresillon, “Surface enhanced fluorescence,” Journal of Physics D, vol. 41, Article ID 013001, 2008.
  27. J. Zhang, Y. Fu, M. H. Chowdhury, and J. R. Lakowicz, “Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles,” Nano Letters, vol. 7, no. 7, pp. 2101–2107, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Enderlein and T. Ruckstuhl, “The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection,” Optics Express, vol. 13, no. 22, pp. 8855–8865, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. J. Hung, I. I. Smolyaninov, C. C. Davis, and H. C. Wu, “Fluorescence enhancement by surface gratings,” Optics Express, vol. 14, no. 22, pp. 10825–10830, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Liu and S. Blair, “Fluorescence enhancement from an array of subwavelength metal apertures,” Optics Letters, vol. 28, no. 7, pp. 507–509, 2003. View at Scopus
  31. F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Letters, vol. 7, pp. 496–501, 2007. View at Publisher · View at Google Scholar
  32. R. M. Bakker, H. K. Yuan, Z. Liu et al., “Enhanced localized fluorescence in plasmonic nanoantennae,” Applied Physics Letters, vol. 92, no. 4, Article ID 043101, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nature Photonics, vol. 3, no. 11, pp. 654–657, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. L. Novotny, “Effective wavelength scaling for optical antennas,” Physical Review Letters, vol. 98, Article ID 266802, 2007.
  35. J. Alda, J. M. Rico-García, J. M. López-Alonso, and G. Boreman, “Optical antennas for nano-photonic applications,” Nanotechnology, vol. 16, no. 5, pp. S230–S234, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. F. Gonzalez and G. Boreman, “Comparison of dipole, bowtie, spiral and logperiodic IR antennas,” Infrared Physics & Technology Journal, vol. 146, pp. 418–428, 2004.
  37. R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: towards a unity efficiency near-field optical probe,” Applied Physics Letters, vol. 70, no. 11, pp. 1354–1356, 1997. View at Scopus
  38. P. J. Burke, S. Li, and Z. Yu, “Quantitative theory of nanowire and nanotube antenna performance,” IEEE Transactions on Nanotechnology, vol. 5, pp. 314–334, 2006.
  39. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Optics Express, vol. 16, no. 12, pp. 9144–9154, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. M. L. Brongersma, “Plasmonics: engineering optical nanoantennas,” Nature Photonics, vol. 2, no. 5, pp. 270–272, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Physical Review Letters, vol. 94, no. 1, Article ID 017402, 4 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Zandler, J. Enderlein, and R. A. Keller, Eds., Single-Molecule Detection in Solution—Methods and Applications, Wiley-VCH, Berlin, Germany, 2002.
  43. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Physical Review B, vol. 6, no. 12, pp. 4370–4379, 1972. View at Publisher · View at Google Scholar · View at Scopus