About this Journal Submit a Manuscript Table of Contents
International Journal of Antennas and Propagation
Volume 2013 (2013), Article ID 102925, 11 pages
http://dx.doi.org/10.1155/2013/102925
Review Article

Overview on Multipattern and Multipolarization Antennas for Aerospace and Terrestrial Applications

1School of Electronic and Information Engineering, Beihang University, Beijing 100191, China
2Department of Electrical and Computer Engineering, Dalhousie University, Halifax, NS, Canada B3J 2X4

Received 17 February 2013; Accepted 12 March 2013

Academic Editor: Haiwen Liu

Copyright © 2013 Aixin Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. H. Schaubet, F. G. Farrar, S. T. Hayes, et al., “Frequency-agile polarization diverse microstrip antennas and frequency scanned arrays,” U.S. Patent 4,367,474, Jan. 1983.
  2. C. G. Christodoulou, Y. Tawk, S. A. Lane, and S. R. Erwin, “Reconfigurable antennas for wireless and space applications,” Proceedings of the IEEE, vol. 100, no. 7, pp. 2250–2261, 2012.
  3. W. S. Kang, J. A. Park, and Y. J. Yoon, “Simple reconfigurable antenna with radiation pattern,” Electronics Letters, vol. 44, no. 3, pp. 182–183, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. M. I. Lai, T. Y. Wu, J. C. Hsieh, C. H. Wang, and S. K. Jeng, “Design of reconfigurable antennas based on an L-shaped slot and PIN diodes for compact wireless devices,” IET Microwaves, Antennas and Propagation, vol. 3, no. 1, pp. 47–54, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. L. G. Maloratsky, “Switched directional/omnidirectional antenna module for amplitude monopulse systems,” IEEE Antennas and Propagation Magazine, vol. 51, no. 5, pp. 90–102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Peruani and A. Maiti, “Modeling broadcasting using omnidirectional and directional antenna in delay tolerant networks as an epidemic dynamics,” IEEE Journal on Selected Areas in Communications, vol. 28, no. 4, pp. 524–531, 2010.
  7. M. Ding, R. Jin, J. Geng, X. Guo, and J. Chen, “A high-gain dual-band directional/omnidirectional reconfigurable antenna for WLAN systems,” International Journal of RF and Microwave Computer-Aided Engineering, vol. 18, no. 3, pp. 225–232, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Donelli, R. Azaro, L. Fimognari, and A. Massa, “A planar electronically reconfigurable wi-fi band antenna based on a parasitic microstrip structure,” IEEE Antennas and Wireless Propagation Letters, vol. 6, pp. 623–626, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Piazza, M. D'Amico, and K. R. Dandekar, “Performance improvement of a wideband MIMO system by using two-port RLWA,” IEEE Antennas and Wireless Propagation Letters, vol. 8, pp. 830–834, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Y. Lau and S. V. Hum, “A planar reconfigurable aperture with lens and reflectarray modes of operation,” IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 12, pp. 3547–3555, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Suntives and S. V. Hum, “A fixed-frequency beam-steerable half-mode substrate integrated waveguide leaky-wave antenna,” IEEE Transactions on Antennas and Propagation, vol. 60, no. 5, pp. 2540–2544, 2012.
  12. A. Suntives and S. V. Hum, “An electronically tunable half-mode substrate integrated waveguide leaky-wave antenna,” in Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP '11), pp. 3670–3674, April 2011. View at Scopus
  13. C. Liu and S. V. Hum, “An electronically tunable single-layer reflectarray antenna element with improved bandwidth,” IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 1241–1244, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Boccia, I. Russo, G. Amendola, and G. Di Massa, “Multilayer antenna-filter antenna for beam-steering transmit-array applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 7, pp. 2287–2300, 2012.
  15. W. Hu, M. Y. Ismail, R. Cahill et al., “Liquid-crystal-based reflectarray antenna with electronically switchable monopulse patterns,” Electronics Letters, vol. 43, no. 14, pp. 744–745, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. C. J. Panagamuwa, A. Chauraya, and J. C. Vardaxoglou, “Frequency and beam reconfigurable antenna using photoconducting switches,” IEEE Transactions on Antennas and Propagation, vol. 54, no. 2, pp. 449–454, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Piazza, N. J. Kirsch, A. Forenza, R. W. Heath, and K. R. Dandekar, “Design and evaluation of a reconfigurable antenna array for MIMO systems,” IEEE Transactions on Antennas and Propagation, vol. 56, no. 3, pp. 869–881, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. Z. Li, Z. Du, and K. Gong, “Compact reconfigurable antenna array for adaptive MIMO systems,” IEEE Antennas and Wireless Propagation Letters, vol. 8, pp. 1317–1320, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Sarrazin, Y. Mahé, S. Avrillon, and S. Toutain, “Pattern reconfigurable cubic antenna,” IEEE Transactions on Antennas and Propagation, vol. 57, no. 2, pp. 310–317, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Eslami, C. P. Sukumar, D. Rodrigo et al., “Reduced overhead training for multi reconfigurable antennas with beam-tilting capability,” IEEE Transactions on Wireless Communications, vol. 9, no. 12, pp. 3810–3821, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Yang, X. Zhao, and T. Wang, “Design of arbitrarily controlled multi-beam antennas via optical transformation,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 30, no. 4, pp. 337–348, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. A.-H. Tsai, L.-C. Wang, J.-H. Huang, and R.-B. Hwang, “Stable subchannel allocation for OFDMA femtocells with switched multi-beam directional antennas,” in Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM '11), pp. 1–6, December 2011.
  23. G. Krieger, N. Gebert, and A. Moreira, “Multidimensional waveform encoding: a new digital beamforming technique for synthetic aperture radar remote sensing,” IEEE Transactions on Geoscience and Remote Sensing, vol. 46, no. 1, pp. 31–46, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. G. J. Hayes, J.-H. So, A. Qusba, M. D. Dickey, and G. Lazzi, “Flexible liquid metal alloy (EGaIn) microstrip patch antenna,” IEEE Transactions on Antennas and Propagation, vol. 60, no. 5, pp. 2151–2156, 2012.
  25. M. F. Jamlos, T. A. Rahman, and M. R. Kamarudin, “The effects of air stacked on reconfigurable quadratic slots antenna for WiMAX and 4G applications,” Microwave and Optical Technology Letters, vol. 54, no. 9, pp. 2139–2144, 2012.
  26. T. Takano, K. Miura, M. Natori et al., “Deployable antenna with 10-m maximum diameter for space use,” IEEE Transactions on Antennas and Propagation, vol. 52, no. 1, pp. 2–11, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Li, Z. Zhang, J. Zheng, and Z. Feng, “Channel capacity study of polarization reconfigurable slot antenna for indoor MIMO system,” Microwave and Optical Technology Letters, vol. 53, no. 6, pp. 1209–1213, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. B. Q. Wu and K. M. Luk, “The design of wideband reconfigurable antenna with four polarizations,” in Proceedings of the 39th European Microwave Conference (EuMC '09), pp. 759–762, September 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Clemente, L. Dussopt, R. Sauleau, et al., “1-bit reconfigurable unit cell based on PIN diodes for transmit-array applications in X-band,” IEEE Transactions on Antennas and Propagation, vol. 60, no. 5, pp. 2260–2269, 2012.
  30. G. Wang, R. Bairavasubramanian, B. Pan, and J. Papapolymerou, “Radiofrequency MEMS-enabled polarisation-reconfigurable antenna arrays on multilayer liquid crystal polymer,” IET Microwave Antenna and Propagation, vol. 5, no. 13, pp. 1594–1599, 2011.
  31. A. Grau, J. Romeu, M. J. Lee, S. Blanch, L. Jofre, and F. de Flaviis, “A dual-Linearly-polarized MEMS-reconfigurable antenna for narrowband MIMO communication systems,” IEEE Transactions on Antennas and Propagation, vol. 58, no. 1, pp. 4–17, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. P. Seongmin and S. Imseob, “A miniaturized switchable circularly polarized patch antenna controlled by a single diode operation,” Microwave and Optical Technology Letters, vol. 54, no. 10, pp. 2375–2378, 2012.
  33. K. F. Tong and J. Huang, “New proximity coupled feeding method for reconfigurable circularly polarized microstrip ring antennas,” IEEE Transactions on Antennas and Propagation, vol. 56, no. 7, pp. 1860–1866, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. W. S. Yoon, J. W. Baik, H. S. Lee, S. Pyo, S. M. Han, and Y. S. Kim, “A reconfigurable circularly polarized microstrip antenna with a slotted ground plane,” IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 1161–1164, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Seongmin and S. Youngje, “A circular polarized microstrip antenna with an arrow-shaped slotted ground,” Microwave and Optical Technology Letters, vol. 54, no. 1, pp. 271–273, 2012.
  36. J. A. Ruiz-Cruz, M. M. Fahmi, S. A. Fouladi, and R. R. Mansour, “Waveguide antenna feeders with integrated reconfigurable dual circular polarization,” IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 12, pp. 3365–3374, 2011.
  37. S. H. Hsu and K. Chang, “A novel reconfigurable microstrip antenna with switchable circular polarization,” IEEE Antennas and Wireless Propagation Letters, vol. 6, pp. 160–162, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Khaleghi and M. Kamyab, “Reconfigurable single port antenna with circular polarization diversity,” IEEE Transactions on Antennas and Propagation, vol. 57, no. 2, pp. 555–559, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. J. S. Row and M. C. Chan, “Reconfigurable circularly-polarized patch antenna with conical beam,” IEEE Transactions on Antennas and Propagation, vol. 58, no. 8, pp. 2753–2757, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. J. Cheng, W. Hong, and K. Wu, “Millimeter-wave half mode substrate integrated waveguide frequency scanning antenna with quadri-polarization,” IEEE Transactions on Antennas and Propagation, vol. 58, no. 6, pp. 1848–1855, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Dong and T. Itoh, “Millimeter-Wave half mode substrate integrated waveguide frequency scanning antenna with quadri-polarization,” IEEE Transactions on Antennas and Propagation, vol. 60, no. 2, pp. 760–771, 2012.
  42. X.-X. Yang, B.-C. Shao, F. Yang, et al., “A polarization reconfigurable patch antenna with loop slots on the ground plane,” IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 69–72, 2012.
  43. Y. F. Wu, C. H. Wu, D. Y. Lai, and F. C. Chen, “A reconfigurable quadri-polarization diversity aperture-coupled patch antenna,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 3, pp. 1009–1012, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. R. H. Chen and J. S. Row, “Single-fed microstrip patch antenna with switchable polarization,” IEEE Transactions on Antennas and Propagation, vol. 56, no. 4, pp. 922–926, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. O. H. Karabey, S. Bildik, and S. Strunck, “Continuously polarisation reconfigurable antenna element by using liquid crystal based tunable coupled line,” Electronics Letters, vol. 48, no. 3, pp. 141–143, 2012.
  46. B. Kim, B. Pan, S. Nikolaou, Y. S. Kim, J. Papapolymerou, and M. M. Tentzeris, “A novel single-feed circular microstrip antenna with reconfigurable polarization capability,” IEEE Transactions on Antennas and Propagation, vol. 56, no. 3, pp. 630–638, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. H. Emami, N. Sarkhosh, and E. R. L. Lara, “Reconfigurable photonic feed for sinuous antenna,” Journal of Light Wave Technology, vol. 30, no. 16, pp. 2725–2732, 2012.
  48. P. Y. Qin, A. R. Weily, Y. J. Guo, and C. H. Liang, “Polarization reconfigurable U-slot patch antenna,” IEEE Transactions on Antennas and Propagation, vol. 58, no. 10, pp. 3383–3388, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. M. S. Nishamol, V. P. Sarin, D. Tony, et al., “An electronically reconfigurable microstrip antenna with switchable slots for polarization diversity,” IEEE Transactions on Antennas and Propagation, vol. 59, no. 9, pp. 3424–3427, 2011.
  50. J. H. Lim, G. T. Back, and T. Y. Yun, “Polarization-diversity cross-shaped patch antenna for satellite-DMB systems,” ETRI Journal, vol. 32, no. 2, pp. 312–318, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. X. Yuan, Z. Li, D. Rodrigo, et al., “A parasitic layer-based reconfigurable antenna design by multi-objective optimization,” IEEE Transactions on Antennas and Propagation, vol. 60, no. 6, pp. 2690–2701, 2012.
  52. X.-S. Yang, B.-Z. Wang, S.-H. Yeung, et al., “Circularly polarized reconfigurable crossed-vagi patch antenna,” IEEE Antennas and Propagation Magazine, vol. 53, no. 5, pp. 65–80, 2011.
  53. Y. Dong and T. Itoh, “Planar ultra-wideband antennas in ku- and k-band for pattern or polarization diversity applications,” IEEE Transactions on Antennas and Propagation, vol. 60, no. 6, pp. 2886–2895, 2012.
  54. B. Poussot, J. M. Laheurte, L. Cirio, and O. Picon, “Diversity gain measurements of a reconfigurable antenna with switchable polarization,” Microwave and Optical Technology Letters, vol. 49, no. 12, pp. 3154–3158, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. B. Poussot, J. M. Laheurte, L. Cirio, O. Picon, D. Delcroix, and L. Dussopt, “Diversity measurements of a reconfigurable antenna with switched polarizations and patterns,” IEEE Transactions on Antennas and Propagation, vol. 56, no. 1, pp. 31–38, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. P. Daniele and D. Michele, “Pattern and polarization reconfigurable CRLH leaky wave antenna,” in Proceedings of the 4th European Conference on Antennas and Propagation (EuCAP '10), pp. 1–5, April 2010. View at Scopus
  57. W. Cao, B. Zhang, A. Liu, et al., “A reconfigurable microstrip antenna with radiation pattern selectivity and polarization diversity,” IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 453–456, 2012.
  58. W. Chen, J. Sun, and Z. Feng, “A novel compact reconfigurable polarization and pattern antenna,” Microwave and Optical Technology Letters, vol. 49, no. 11, pp. 2802–2805, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. D. Piazza, P. Mookiah, M. D'Amico, and K. R. Dandekar, “Experimental analysis of pattern and polarization reconfigurable circular patch antennas for MIMO systems,” IEEE Transactions on Vehicular Technology, vol. 59, no. 5, pp. 2352–2362, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. W. L. Liu, T. R. Chen, S. H. Chen, and J. S. Row, “Reconfigurable microstrip antenna with pattern and polarisation diversities,” Electronics Letters, vol. 43, no. 2, pp. 77–78, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. A. G. Besoli and F. D. Flaviis, “A multifunctional reconfigurable pixeled antenna using mems technology on printed circuit board,” IEEE Transactions on Antennas and Propagation, vol. 59, no. 12, pp. 4413–4424, 2011.
  62. M. Ali, A. T. M. Sayem, and V. K. Kunda, “A reconfigurable stacked microstrip patch antenna for satellite and terrestrial links,” IEEE Transactions on Vehicular Technology, vol. 56, no. 2, pp. 426–435, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. M. D. van de Burgwal, K. C. Rovers, KC. H. Blom, et al., “Mobile satellite reception with a virtual satellite dish based on a reconfigurable multi-processor architecture,” Microprocessors and Microsystems, vol. 35, no. 8, pp. 716–728, 2011.
  64. J. A. Lee, S. B. Byun, J. H. Lim, and T. Y. Yun, “Reconfigurable antenna for wideband code division multiple access and korean satellite digital multimedia broadcasting controlled by PIN-diodes,” Microwave and Optical Technology Letters, vol. 49, no. 6, pp. 1334–1337, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Alshershby and J. Q. Lin, “Reconfigurable plasma antenna produced in air by laser-induced filaments: passive radar application,” in Proceedings of the International Conference on Optoelectronics and Microelectronics (ICOM '12), pp. 364–371, August 2012.
  66. N. Romano, G. Prisco, and F. Soldovieri, “Design of a reconfigurable antenna for ground penetrating radar applications,” Progress in Electromagnetics Research, vol. 94, pp. 1–18, 2009. View at Scopus
  67. F. Soldovieri and N. Romano, “The mutual interaction between the reconfigurable transmitting and receiving antennas in ground penetrating radar surveys,” Journal of Electromagnetic Waves and Applications, vol. 23, no. 14-15, pp. 1919–1928, 2009.
  68. M. F. Jamlos, O. A. Aziz, T. A. Rahman et al., “A reconfigurable radial line slot array (RLSA) antenna for beam shape and broadside application,” Journal of Electromagnetic Waves and Applications, vol. 24, no. 8-9, pp. 1171–1182, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. P. A. Martin, P. J. Smith, and R. Murch, “Improving space-time code performance in slow fading channels using reconfigurable antennas,” IEEE Communications Letters, vol. 16, no. 4, pp. 494–497, 2012.
  70. F. Fazel, A. Grau, H. Jafarkhani, and F. de Flaviis, “Space-time-state block coded MIMO communication systems using reconfigurable antennas,” IEEE Transactions on Wireless Communications, vol. 8, no. 12, pp. 6019–6029, 2009. View at Publisher · View at Google Scholar · View at Scopus