About this Journal Submit a Manuscript Table of Contents
International Journal of Antennas and Propagation
Volume 2013 (2013), Article ID 147097, 7 pages
http://dx.doi.org/10.1155/2013/147097
Research Article

Sparse Planar Array Synthesis Using Matrix Enhancement and Matrix Pencil

1School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
2The Second Research Institute of Civil Aviation of China, Chengdu 610041, China
3School of Astronautics and Aeronautics, University of Electronic Science and Technology of China, Chengdu 611731, China

Received 3 July 2012; Accepted 28 January 2013

Academic Editor: Tat Yeo

Copyright © 2013 Mei-yan Zheng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Chen, X. Yun, Z. He, and C. Han, “Synthesis of sparse planar arrays using modified real genetic algorithm,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 4, pp. 1067–1073, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. D. G. Kurup, M. Himdi, and A. Rydberg, “Synthesis of uniform amplitude unequally spaced antenna arrays using the differential evolution algorithm,” IEEE Transactions on Antennas and Propagation, vol. 51, no. 9, pp. 2210–2217, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. B. P. Kumar and G. R. Branner, “Design of unequally spaced arrays for performance improvement,” IEEE Transactions on Antennas and Propagation, vol. 47, no. 3, pp. 511–523, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. B. P. Kumar and G. R. Branner, “Generalized analytical technique for the synthesis of unequally spaced arrays with linear, planar, cylindrical or spherical geometry,” IEEE Transactions on Antennas and Propagation, vol. 53, no. 2, pp. 621–634, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Yang, Z. Zhao, and Y. Liu, “Synthesis of sparse planar arrays with matrix pencil method,” in Proceedings of the International Conference on Computational Problem-Solving (ICCP '11), pp. 82–85, 2011.
  6. T. K. Sarkar and O. Pereira, “Using the matrix pencil method to estimate the parameters of a sum of complex exponentials,” IEEE Antennas and Propagation Magazine, vol. 37, no. 1, pp. 48–55, 1995. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Hua and T. K. Sarkar, “Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 38, no. 5, pp. 814–824, 1990. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Hua, “Estimating two-dimensional frequencies by matrix enhancement and matrix pencil,” IEEE Transactions on Signal Processing, vol. 40, no. 9, pp. 2267–2280, 1992. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Wang and J. J. Zhou, “Modified MEMP method for 2D scattering center measurement based on GTD model,” in Proceedings of the International Conference on Microwave and Millimeter Wave Technology (ICMMT '08), pp. 987–990, April 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Jian, S. Wang, and L. Lin, “2-D DOA estimation by MEMP based on L-shape array,” in Proceedings of the 8th International Conference on Signal Processing (ICSP '06), vol. 1, pp. 16–20. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Liu, Z. Nie, and Q. H. Liu, “Reducing the number of elements in a linear antenna array by the matrix pencil method,” IEEE Transactions on Antennas and Propagation, vol. 56, no. 9, pp. 2955–2962, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. D. K. Cheng, “Optimization techniques for antenna arrays,” Proceedings of the IEEE, vol. 59, no. 12, pp. 1664–1674, 1971. View at Scopus
  13. E. K. Miller and D. M. Goodman, “A pole-zero modeling approach to linear array synthesis I. The unconstrained solution,” Radio Science, vol. 18, no. 1, pp. 57–69, 1983. View at Scopus
  14. S. Rouquette and M. Najim, “Estimation of frequencies and damping factors by two-dimensional ESPRIT type methods,” IEEE Transactions on Signal Processing, vol. 49, no. 1, pp. 237–245, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Yu and H. T. Hui, “Design of a mutual coupling compensation network for a small receiving monopole array,” IEEE Transactions on Microwave theory and Techniques, vol. 59, no. 9, pp. 2241–2245, 2011.
  16. B. H. Wang, H. T. Hui, and M. S. Leong, “Decoupled 2D direction of arrival estimation using compact uniform circular arrays in the presence of elevation-dependent mutual coupling,” IEEE Transactions on Antennas and Propagation, vol. 58, no. 3, pp. 747–755, 2010. View at Publisher · View at Google Scholar · View at Scopus