About this Journal Submit a Manuscript Table of Contents
International Journal of Antennas and Propagation
Volume 2013 (2013), Article ID 167368, 7 pages
http://dx.doi.org/10.1155/2013/167368
Research Article

Interference Coordination in Multiple Antenna Based LTE-Advanced Heterogeneous Systems

Wireless Signal Processing and Network Lab, Key Laboratory of Universal Wireless Communications (Ministry of Education), Beijing University of Posts and Telecommunications, Beijing 100876, China

Received 9 January 2013; Accepted 19 March 2013

Academic Editor: Feifei Gao

Copyright © 2013 Yuan Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

With picocells deployed in the coverage of a macrocell in heterogeneous networks (HetNets), the macrocell evolved NodeB (MeNB) may receive interference signals from the picocell users, which results in more severe co-channel interference (CCI) problem in the uplink. In this paper, the spatial uplink interference coordination is investigated in multiple antenna systems, according to which the receiver coding matrix is generated by MeNB to mitigate the CCI from picocell users. Two interference coordination (IC) schemes are proposed based on whether the receiver coding matrix is full rank or not, named as full coding (IC-FC) and part coding (IC-PC), respectively. The application of the proposed schemes is discussed in single picocell and multiple picocell scenarios. The CCI can be totally canceled in single picocell scenario, and an algorithm is developed in multiple picocell networks to mitigate the most severely interfering picocell. Link level and system level simulations are applied, and it is shown that significant performance gain is achieved by our proposed schemes over traditional IC receivers.