About this Journal Submit a Manuscript Table of Contents
International Journal of Antennas and Propagation
Volume 2013 (2013), Article ID 396459, 10 pages
http://dx.doi.org/10.1155/2013/396459
Research Article

Wireless Sensing for the Respiratory Activity of Human Beings: Measurements and Wide-band Numerical Analysis

1Dipartimento di Ingegneria Industriale e Scienze Matematiche (DIISM), Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
2Dipartimento di Ingegneria dell’Informazione (DII), Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy

Received 5 December 2012; Revised 11 March 2013; Accepted 20 March 2013

Academic Editor: Renato Cicchetti

Copyright © 2013 Lorenzo Scalise et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. G. Webster, Medical Instrumentation Application and Design, John Willey & Sons, Boston, Mass, USA, 1992.
  2. L. Scalise and U. Morbiducci, “Non-contact cardiac monitoring from carotid artery using optical vibrocardiography,” Medical Engineering and Physics, vol. 30, no. 4, pp. 490–497, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. U. Morbiducci, L. Scalise, M. De Melis, and M. Grigioni, “Optical vibrocardiography: a novel tool for the optical monitoring of cardiac activity,” Annals of Biomedical Engineering, vol. 35, no. 1, pp. 45–58, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. M. De Melis, U. Morbiducci, and L. Scalise, “Identification of cardiac events by optical vibrocardiograpy: comparison with phonocardiography,” in Proceedings of the 29th Annual International Conference of IEEE-EMBS, Engineering in Medicine and Biology Society (EMBC '07), pp. 2956–2959, August 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. M. De Melis, U. Morbiducci, L. Scalise et al., “A preliminary study for the evaluation of large artery stiffness: a non contact approach,” Artery Research, vol. 2, no. 3, pp. 100–101, 2008.
  6. S. Bakhtiari, T. W. Elmer, N. M. Cox et al., “Compact millimeter-wave sensor for remote monitoring of vital signs,” IEEE Transactions on Instrumentation and Measurement, vol. 61, no. 3, pp. 830–841, 2011.
  7. M. I. Bierman, “Respiratory monitoring,” in Comprehensive Respiratory Care, D. E. Dantzkner, N. R. Macintyre, and E. D. Bakow, Eds., W. B. Saunders Company, Philadelphia, Pa, USA, 1995.
  8. M. Folke, L. Cernerud, M. Ekström, and B. Hök, “Critical review of non-invasive respiratory monitoring in medical care,” Medical and Biological Engineering and Computing, vol. 41, no. 4, pp. 377–383, 2003. View at Scopus
  9. X. Zhu, W. Chen, T. Nemoto et al., “Real-time monitoring of respiration rhythm and pulse rate during sleep,” IEEE Transactions on Biomedical Engineering, vol. 53, no. 12, pp. 2553–2563, 2006.
  10. K. Watanabe, T. Watanabe, H. Watanabe, H. Ando, T. Ishikawa, and K. Kobayashi, “Noninvasive measurement of heartbeat, respiration, snoring and body movements of a subject in bed via a pneumatic method,” IEEE Transactions on Biomedical Engineering, vol. 52, no. 12, pp. 2100–2107, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. K. P. Cohen, W. M. Ladd, D. M. Beams, et al., “Comparison of impedance and inductance ventilation sensors on adults during breathing, motion, and simulated airway obstruction,” IEEE Transactions on Biomedical Engineering, vol. 44, no. 7, pp. 555–566, 1997. View at Publisher · View at Google Scholar · View at Scopus
  12. D. I. Townsend, M. Holtzman, R. Goubran, M. Frize, and F. Knoefel, “Measurement of torso movement with delay mapping using an unobtrusive pressure-sensor array,” IEEE Transactions on Instrumentation and Measurement, vol. 60, no. 5, pp. 1751–1760, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Scalise, P. Marchionni, and I. Ercoli, “Optical method for measurement of respiration rate,” in Proceedings of the IEEE International Workshop on Medical Measurements and Applications (MeMeA '10), pp. 19–22, May 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Scalise, P. Marchionni, and I. Ercoli, “A non contact, optical procedure for precise measurement of respiration rate and flow,” in Biophotonics: Photonic Solutions for Better Health Care II, vol. 77150 of Proceedings of SPIE, April 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Scalise, I. Ercoli, P. Marchionni, and E. P. Tomasini, “Measurement of respiration rate in preterm infants by laser Doppler vibrometry,” in Proceedings of the IEEE International Workshop on Medical Measurement and Applications (MeMeA '11), pp. 657–661, 2011.
  16. J. C. Lin, “Non-invasive microwave measurement of respiration,” Proceedings of the IEEE, vol. 63, no. 10, p. 1530, 1975.
  17. E. Greneker, “Radar sensing of heartbeat and respiration at a distance with applications of the technology,” Radar, vol. 97, pp. 150–154, 1997.
  18. J. C. Lin, “Microwave sensing of physiological movement and volume change: a review,” Bioelectromagnetics, vol. 13, no. 6, pp. 557–565, 1992. View at Scopus
  19. C. Gu, C. Li, J. Lin, J. Long, J. Huangfu, and L. Ran, “Instrument-based noncontact doppler radar vital sign detection system using heterodyne digital quadrature demodulation architecture,” IEEE Transactions on Instrumentation and Measurement, vol. 59, no. 6, pp. 1580–1588, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. J. C. Y. Lai, Y. Xu, E. Gunawan et al., “Wireless sensing of human respiratory parameters by low-power ultrawideband impulse radio radar,” IEEE Transactions on Instrumentation and Measurement, vol. 60, no. 3, pp. 928–938, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Li, J. Ling, J. Li, and J. Lin, “Accurate doppler radar noncontact vital sign detection using the RELAX algorithm,” IEEE Transactions on Instrumentation and Measurement, vol. 59, no. 3, pp. 687–695, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Scalise, A. De Leo, V. Mariani Primiani, P. Russo, D. Shahu, and G. Cerri, “Non contact monitoring of the respiration activity by electromagnetic sensing,” in Proceedings of the IEEE International Workshop on Medical Measurement and Applications (MeMeA '11), pp. 418–422, 2011.
  23. F. Soldovieri, I. Catapano, L. Crocco, L. N. Anishchenko, and S. I. Ivashov, “A feasibility Study for Life SignsMonitoring via a Continuous-Wave Radar,” International Journal on Antenna and Propagation, vol. 2012, Article ID 420178, 5 pages, 2012.
  24. S. Agneessens, P. Van Torre, F. Declercq et al., “Design of a wearable, low-cost, through-wall doppler radar system,” International Journal on Antenna and Propagation, vol. 2012, Article ID 840924, 9 pages, 2012.
  25. C. A. Balanis, Antenna Theory: Analysis and Design, John Wiley & Sons, New York, NY, USA, 2005.
  26. P. Bernardi, R. Cicchetti, S. Pisa, E. Pittella, E. Piuzzi, and O. Testa, “Design and realization of a UWB radar for breath activity monitoring,” in Proceedings of the International Symposium on Electromagnetic Compatibility (EMC EUROPE '12), pp. 1–6, 2012.
  27. L. W. Chua, “A new UWB antenna with excellent time domain characteristics,” in Proceedings of the 8th European Conference on Wireless Technology, pp. 551–554, October 2005. View at Scopus
  28. https://www.novelda.no/content/development-kits.
  29. D. Dei, G. Grazzini, G. Luzi et al., “Non-contact detection of breathing using a microwave sensor,” Sensors, vol. 9, no. 4, pp. 2574–2585, 2009.