About this Journal Submit a Manuscript Table of Contents
International Journal of Antennas and Propagation
Volume 2014 (2014), Article ID 848062, 10 pages
http://dx.doi.org/10.1155/2014/848062
Research Article

A Compact Planar UWB Antenna with Triple Controllable Band-Notched Characteristics

1Laboratoire des Télécommunications, Faculté des Sciences et de la Technologie, Université 8 mai 1945 Guelma, 24000 Guelma, Algeria
2Laboratoire LIS, Faculté de Technologie, Université Ferhat Abbas Sétif, 19000 Sétif, Algeria

Received 27 May 2013; Revised 14 December 2013; Accepted 22 December 2013; Published 6 February 2014

Academic Editor: Rashed Mohassel

Copyright © 2014 Chaabane Abdelhalim and Djahli Farid. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A modified compact planar ultrawideband (UWB) monopole antenna with triple controllable band-notched characteristics is presented in this paper. The proposed antenna consists of a modified stair cased V-shaped radiating element and partial ground plane. The triple band-notched characteristics are achieved by embedding two different vertical up C-shaped slots with a vertical down C-shaped slot in the radiating patch and in the ground plane, respectively. Besides, the bandwidth of each rejected band can be independently controlled by adjusting the dimensions of the corresponding band notched structure. The proposed antenna with rejected bands characteristics is successfully simulated, prototyped, and measured. The measured results show that the antenna operates until upper 11 GHz for voltage standing wave ratio (VSWR) is less than 2, and exhibits bands rejection of 1.6–2.66 GHz (49.76%), 3-4 GHz (28.57%), and 5.13–6.03 GHz (16.12%). Moreover, the proposed antenna shows a near omnidirectional radiation patterns, stable peak gain, and with small group delay and transfer function variation on the whole UWB frequency range except in the notched frequency bands, which makes it suitable for being used in the future UWB applications.

1. Introduction

Ultrawideband (UWB) is specified in the Federal Communication Commission (FCC) [1] as the frequency band that ranges from 3.1 GHz to 10.6 GHz, which is a 7.5 GHz bandwidth (BW). Several planar UWB monopole antennas, which have the potential to meet such requirements, were reported in [25]. Due to the overlap of the currently allocated UWB frequency band with the communication systems such as Wireless Local Area Network (WLAN) bands in the 2.4 GHz (2.4–2.484 GHz), 5.2 GHz (5.15–5.35 GHz), and 5.8 GHz (5.725–5.825 GHz) bands, and the World Interoperability for Microwave Access (WiMAX) system bands 2.5 GHz (2.5–2.69 GHz), 3.5 GHz (3.4–3.69 GHz), and 5.8 GHz (5.25–5.825 GHz) [6]. Now, many systems operate across several frequency bands, requiring a band-notched or band-rejected function. Thus, it is desirable to design UWB antennas with band notch characteristics to avoid potential interferences from the other frequency bands. To overcome problems caused by this electromagnetic interference, several designs of UWB antennas with single or multiple notch functions have been proposed in recent literature [639]. Reviewing the literature shows that there are few ways for monopole planar antennas to achieve band-notched characteristics. The most popular approach is cutting different shaped slots from the radiating patch, from the ground plane, or from the feed line, that is, U-shaped slot [7], a Hilbert-curve shaped slot [8], cutting a wide line [9], T-shaped slot [10], defected ground structure (DGS) [11], semicircular slot [12], a bent slot or C-shaped slot [1315], split ring in the ground plane [16], and slot line in the feed line [17]). Another way consists of loading diverse parasitic elements on the antenna, such as parasitic elements rear or near the radiating element [1823], and near the feed line [2433], to generate the band-notched feature, which acts as resonator when the length of strip is about a half or a quarter of the guided wavelength at the desired notch frequency. In reference [31], a band-notched characteristic has been achieved by coupling a pair of open-loop resonators beside the feed line, in this reference, the author just notched the band for WLAN system. In reference [32], one set of band rejected structure with two C-shaped slots has been adopted to reject the lower WLAN band (5.15–5.35 GHz) and another one with two splits inverted resonators has been employed to reject the upper WLAN band (5.725–5.825 GHz). In reference [33], two splits rectangular ring resonators have been placed close to the microstrip line to reject the band 5.02–6.05 GHz. Additionally, a straight line slit has been etched on the radiating patch to reject the band 2.52–3.66 GHz; by using this technique, the control of this rejected band is limited by few key design parameters, and by the space restriction of the radiating patch to avoid this drawback and to get more freedom in designing, it is better to use another shape slit. In reference [34], only one notched band centered at 5.5 GHz is achieved by etching a partial annular slot in the lower portion of a ring radiator. Most of UWB antennas have no more than two notched bands, and few of them have three notched bands [3537], which reveal that potential interference from other narrow bands may still exist. So, to design an antenna for UWB applications with notching all the bands for WiMAX and WLAN systems is necessary. In reference [35], three parasitic resonant elements are placed near the ground plane to generate three notch frequency bands 3.26–3.71 GHz, 5.15–5.37 GHz, and 5.78–5.95 GHz; in this reference, the bands 2.4/2.5 GHz corresponding to WLAN and WiMAX have not been rejected, and the use of parasitic resonators leads to a more complex structure. In reference [36], a compact UWB antenna with triple band rejected characteristics is achieved with using a meander line split ring resonator, with using this technique three bands 3.15–3.75, 4.85–6.08, and 7.98–8.56 GHz are rejected. The meander line split ring resonator used in this reference is complex compared to a conventional C-shaped slot structure. In reference [37], a pair of spiral loop resonators have been merged with radiating patch to create the first notched band in 3.3–3.7 GHz, in addition, two integrated microstrip resonators have been coupled with ground plane to generate the second and the third-notched bands in 5.2–5.4 GHz and 5.7–6 GHz. All the techniques can achieve good band notch characteristics, but some of the notched band structures are complex and difficult to design. In the designing of triple or multiband notch antenna, it is difficult to adjust and to control the frequency center of the notch bands in a limited space. Moreover, strong couplings between the band-notched characteristics designs for adjacent frequencies are the complication in achieving efficient triple band-notched UWB antenna. There are a lot of researches on UWB antennas with band-notched characteristics [639], but how to obtain high efficient band-notched characteristics is still a challenging issue. The main problem of the band rejected function design is the difficulty of controlling bandwidth and the shifting of the notched band, especially for the case of antennas with several rejected band structures, without infecting other rejected bands. In the future, we expect that the shifting and the control of the frequency center and the bandwidth of the band-notched frequency can be both important and useful in wireless communication systems. So, the aim of this paper is to design a low cost and simple structure UWB antenna with controllable triple band-notched characteristics and an independent control of the width and the shifting of the rejected bands. We propose a compact microstrip-fed planar UWB antenna with modified stair cased V-shaped radiating elements and partial ground plane. To simplify the adjustment of the parameters of the rejected band structures and to obtain high efficient band-notched characteristics, three simple rejected band structures are investigated in this paper. So, three frequency bands notched are achieved with the investigation of these structures; the first rejected band (1.6–2.66 GHz) is achieved by inserting the vertical down C-shaped slot in the ground plane, two others rejected bands (3-4 GHz and 5.13–6.03 GHz) are realized by inserting two vertical up C-shaped slots in the radiator patch. The desired frequency notched bands can be easily achieved and flexibly controlled by adjusting the total length of the corresponding band-notched structure. The designed antenna with optimal dimensions was prototyped and measured. A comparison between experimental and simulated results of the voltage standing wave ratio is achieved. The remaining of this paper is organized as follows. Section 2 presents the configuration of the proposed antenna; parametric study is investigated in Section 3. The simulated and measured results are discussed in Section 4, and finally the conclusion is provided in Section 5.

2. Antenna Configuration

Figure 1 shows the geometry of the proposed compact planar UWB monopole antenna without rejecting band structures. The proposed UWB antenna is located on the x–y plane and the normal direction is parallel to -axis. This antenna is fabricated on a low-cost FR4 epoxy substrate with the thickness of 1.6 mm, relative dielectric constant of 4.4, and loss tangent of 0.008. On the front surface of the substrate of each UWB antenna, a modified stair cased V-shaped radiating element is printed, fed by a microstrip line 50 Ω with 3 mm of width. The ground plane size is 31 11.5 mm2, and the distance between the radiating patch to the ground plane printed on the back surface substrate is 0.5 mm.

848062.fig.001
Figure 1: Geometry of the proposed UWB antenna without band rejected structure.

The simulated voltage standing wave ratio (VSWR) of the reference UWB antenna without band-rejected is presented in Figure 2. The parameters of the reference antenna are optimized to get a VSWR that is less than 2 and to get stable radiation characteristics throughout the frequency band 2.1 GHz to upper than 30 GHz.

848062.fig.002
Figure 2: Simulated VSWR of the reference antenna without band-rejected characteristics.

To overcome the unwanted electromagnetic interferences of UWB communication systems with WLAN and WiMAX frequencies band, two half wavelength vertical up C-shaped slots are inserted in the radiating patch with a half wavelength vertical down C-shaped slot that is embedded in the ground plane. The geometry of the proposed triple band-notched antenna is depicted in Figure 3. The HFSS software is employed to perform the design process.

fig3
Figure 3: The geometry of the proposed triple band-notched antenna: (a) top view and (b) bottom view.

The total length of each slot can be deduced by (1), which is based on the author’s previous works like in [18]. The slots resonate at the corresponding band notching frequency, where its total length is equal to a half wavelength as follows: where

And denotes the total length of the corresponding slot; is the effective dielectric constant of the substrate; and is the speed of light in free space.

3. Parametric Study

A parametric study of the proposed triple band-notched UWB antenna was carried out in order to control the band rejection operation. It is necessary to control the notched bandwidths in practical application to obtain an effective band-notched UWB antenna. Therefore, the rejected bandwidths based on the dimensions of the corresponding notched band structure are studied. By adjusting the total length of each slot to be about a half-wavelength at the desired notched frequency, a destructive interference can take place, and triple band-notched characteristics at 2.2/3.54/5.68 GHz frequencies center are achieved. Details of the influence of each parameter on the proposed triple band-notched antenna will be studied in this section. The discussed parameter is changed, and the other parameters are kept unchanged.

3.1. Controlling the First Rejected Band Generated by the Vertical down C-Shaped Slot

Figures 5(a), 5(b), and 5(c) show the simulated VSWR with changing WS13, LS11, and WS11 on the 2.2 GHz frequency center band. When WS13 increases, the center of the first rejected band 2.2 GHz shifts slightly for lower frequencies side: from 2.37 GHz for WS13 = 2.5 mm to 2.1 GHz for WS13 = 4 mm. We observe the same effect when LS11 increases: the center of the first rejected band shifts slightly from 2.2 GHz for LS11 = 9.5 mm to 2.16 GHz for LS11 = 10.6 mm. In addition, the lower rejected bandwidth shifts slightly for lower frequencies side with increasing WS11: from 2.2 GHz for WS11 = 13 mm to 2 GHz for WS11 = 16.2 mm. The first notched band width is decided by WS13, LS11, and WS11. On the other hand, we can observe that the parameters WS13, LS11, and WS11 have small influences for the two other rejected bands 3.54 GHz and 5.68 GHz.

3.2. Controlling the Second Rejected Band Generated by the Upper Vertical up C-Shaped Slot

Figures 6(a), 6(b), and 6(c) show the simulated VSWR with changing WS21, LS21, and WS23 on the second rejected band 3.54 GHz. When WS21 increases, the center of the second rejected band 3.54 GHz shifts for lower frequencies side: from 3.54 GHz for WS21 = 1.4 mm to 2.6 GHz for WS21 = 5.9 mm. We observe the same effect when LS21 increases: the center of the second rejected band 3.54 GHz shifts from 3.9 GHz for LS21 = 2.2 mm to 3.54 GHz for LS21 = 4.7 mm. In addition, the second rejected bandwidth becomes wider when WS23 increases, and the center of the lower rejected band shifts for lower frequencies side: the width of the lower rejected band increases from 0.45 GHz for WS23 = 10.8 mm to 1 GHz for WS23 = 13.8 mm. From the discussion above, the parameters WS21, LS21, and WS23 are the most important parameters of second notched bandwidth 3.54 GHz, and it can be independently adjusted by changing these three parameters. On the other hand, we can observe that the parameters WS21, LS21, and WS23 have very small influences for the 2.2 GHz and 5.68 GHz rejected bands.

3.3. Controlling the Third Rejected Band Generated by the Lower Vertical up C-Shaped Slots

Figures 7(a), 7(b), and 7(c) show the simulated VSWR with changing WS31, LS31, and WS33 on the third rejected band 5.68 GHz. When WS31 increases the center of the third rejected band shifts for lower frequencies side: from 5.91 GHz for WS31 = 2.4 mm to 5.48 GHz for WS31 = 3 mm. We observe the same effect when LS31 increases: the center of the third rejected band shifts from 5.82 GHz for LS31 = 0.65 mm to 5.42 GHz for LS31 = 1.55 mm. In addition, the third rejected bandwidth becomes wider when WS33 increases, and the center of the third rejected band shifts for lower frequencies side: the width of the lower rejected band increases from 0.44 GHz for WS33 = 7.3 mm to 1.18 GHz for WS33 = 8.3 mm. From the discussion above, we can control the shifted band-notched frequency and the enhanced width of the third band notch 5.68 GHz by varying the parameters WS31, LS31, and WS33, and it can be independently adjusted by changing these parameters. On the other hand, we can observe that the parameters WS31, LS31, and WS33 have very small influences for the two lower rejected bands 2.2 GHz and 3.54 GHz. In summary, the longer the length of the slots and resonators gets, the lower the notched band frequency becomes.

4. Results and Discussion

The proposed UWB antenna with triple band-notched characteristics has been fabricated and measured. The photograph of the prototyped antenna is shown in Figure 4. The optimized dimensions of the band-notched structures used in measurement are depicted in Table 1.

tab1
Table 1: The optimized dimensions of the slots investigated in the proposed antenna.
848062.fig.004
Figure 4: Top and bottom view of the fabricated sample of the proposed antenna.
fig5
Figure 5: The simulated VSWR of the proposed antenna: effects of some parameters on the 2.2 GHz band-notched function, (a) WS13, (b) LS11, (c) WS11.
fig6
Figure 6: The simulated VSWR of the proposed antenna: effects of some parameters on the 3.54 GHz band-notched function, (a) WS21, (b) LS21, (c) WS23.
fig7
Figure 7: The simulated VSWR of the proposed antenna: effects of some parameters on the 5.68 GHz band-notched function, (a) WS31, (b) LS31, (c) WS33.
4.1. VSWR Measurement

Figure 8 shows the measured and simulated voltage standing wave ratio (VSWR) results for the proposed antenna with bands notched characteristics, an excellent agreement between them is observed. It can be seen that the measured notched frequencies and the bandwidths for each of the notched band are very suitable to suppress the disturbances from WLAN and WiMAX systems. The measured frequency range covers commercial UWB band (3.1–10.6 GHz) and rejects three frequencies bands 1.6–2.66 GHz (49.76%), 3-4 GHz (28.57%), and 5.13–6.03 GHz (16.12%); see Table 2.

tab2
Table 2: The rejected bands achieved with the proposed antenna.
848062.fig.008
Figure 8: The measured and simulated VSWR of the proposed triple band-notched antenna.
4.2. Current Distribution

Figures 9(a), 9(b), and 9(c) show the current distribution on our proposed antenna with triple band-notched characteristics at frequencies 2.2 GHz, 3.54 GHz, and 5.68 GHz for the optimal design. A large current distribution around the edges of the slots is observed. In this case, destructive interference for the excited surface currents in the antenna will occur, which causes the antenna to be nonresponsive at those frequencies. At 2.2 GHz, a large current that is distributed around the vertical down C-shaped slot and a very small current that flowed along the two other slots with vertical up C-shaped are seen, which indicates that the changed dimensions of the vertical down C-shaped slot embedded in the ground plane have no effects on the two other upper rejected bands 3.54 GHz and 5.68 GHz. At 3.54 GHz, the current distribution mainly flows along the longest vertical up C-shaped slot embedded in the radiating element, while the currents around the two other slots are very small. In this way, the adjusted size for the longest vertical up C-shaped slot embedded in the radiating element does not affect the 2.2 GHz and 5.68 GHz frequency bands. At 5.68 GHz, the current distributions mainly flow along the shortest vertical up C-shaped slot embedded in the radiating element, while the currents around the other two are very small. In this way, the adjusted size for the shortest vertical up C-shaped slot embedded in the radiating element does not affect the 2.2 GHz and 3.54 GHz frequency bands.

fig9
Figure 9: The current distribution on the proposed antenna at (a) 2.2 GHz, (b) 3.54 GHz, (c) 5.68 GHz.
4.3. Radiation Pattern

Figure 10 shows the normalized far-field radiation patterns for the proposed antenna in two principle planes at different operating frequencies 1.5 GHz, 4.5 GHz, 7.5 GHz, 8.5 GHz, and 10 GHz. At higher frequencies, the radiation pattern deteriorates because the equivalent radiating area changes with frequency over UWB; unequal phase distribution and significant magnitude of higher order modes also play a part in the deterioration of the radiation pattern. Omnidirectional characteristics and radiation bandwidth can be improved if the ground plane length is approximately the same size as that of the radiating structure width. Also they can be further improved by using a thin substrate or a substrate with low dielectric constant [38]. The proposed triple band-notched antenna has nearly omnidirectional radiation characteristic in the H plane copolar radiation pattern and becomes faintly directional with increasing the frequency. The E-plane copolar radiation patterns over operating frequencies are roughly symmetric and have two main lobes. In addition, we can note that the cross-polarization level plane increases marginally with increasing the frequency.

fig10
Figure 10: Radiation patterns at some frequencies: (a) x-z plane (H plane) and (b) y-z plane (E plane).
4.4. Peak Gain

The comparison of the peak gain of the proposed antenna with that of the one without band-notched structures is shown in Figure 11. The peak gain of the proposed triple band-notched antenna almost follows the peak gain of the reference antenna without band-notched structures over the UWB frequency band, except in the notched bands. Three significant drops of the peak gain can be observed in the operating frequency. The peak gain decreases drastically to −6.23/−5.06/−3.20 dBi at around the notched bands which demonstrates that the band-notched function is good.

848062.fig.0011
Figure 11: Peak gain of the proposed antenna with and without notched band structure.
4.5. Group Delay and Transfer Function

Group delay is an important parameter to characterize the degree of distortion of the pulse signal for UWB impulse-based system. It is desired that the group delay response is stable over the UWB frequency band. In addition, the shape of the transmitted pulse should not be distorted [39]. Two identical antennas are arranged face to face at a distance of 30 cm which achieves the far-field condition of the antenna. The group delay of the antenna system is shown in Figure 12. The group delay variation of the proposed antenna is very small, which is less than 1 ns in the pass band. However, in the notched bands, the group delay exceeds 5.5 ns. The characteristic of the group delay indicates that the phase of the antenna is linear in the far field and the pulse signal is not distorted between transmitting and receiving antennas in the pass band. The magnitude of the transfer function has also little variation over the operating band except in the notched bands, as shown in Figure 13. Apart from the notched bands, the group delay and transfer function show slightly small variations, indicating that the proposed design is suitable for UWB applications.

848062.fig.0012
Figure 12: Group delay of the proposed triple band-notched antenna.
848062.fig.0013
Figure 13: Transfer function of the proposed triple band-notched antenna.

At last, in order to reduce potential interferences between UWB systems with WiMAX and WLAN systems, we have exploited three notched bands structures in a proposed UWB antenna for rejecting three frequency bands and adjusting of their parameters influencing only the related rejected band; the rest of the UWB frequency band remains unaffected which offers an autonomous selection and control of the rejected band and bandwidth.

5. Conclusion

To minimize the potential interferences between the UWB communication systems with the WiMAX and WLAN systems, simple, low cost, and compact printed monopole antenna with controllable triple band-notched characteristics is proposed and investigated. Two different vertical up C-shaped slots with a vertical down C-shaped slot are embedded in the radiating patch and in the ground plane, respectively, for rejecting WiMAX and WLAN frequency bands. By simply adjusting the total length and width of the corresponding band-notched structure, the rejected frequency bands can be independently controlled. Finally, a UWB antenna with controllable triple band rejected characteristics is successfully simulated, prototyped, and measured, showing a near omnidirectional radiation pattern, a stable peak gain, and small group delay and transfer function variation over the whole band except in the notched frequency bands. Consequently, the advantages of simple structure, compact size, easy to fabricate, and excellent performances make this antenna a good candidate for practical UWB applications.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

  1. Federal Communications Commission, “Revision of part 15 of the commission's rules regarding ultra-wideband transmission system from 3. 1 to 10. 6 GHz,” in Federal Communications Commission, pp. 98–153, ET-Docket, Washington, DC, USA, 2002.
  2. R. Azim, M. T. Islam, and N. Misran, “Microstrip line-fed printed planar monopole antenna for UWB applications,” The Arabian Journal of Sciences and Engineering, vol. 38, pp. 2415–2422, 2013. View at Publisher · View at Google Scholar
  3. A. K. Gautam, S. Yadav, and B. K. Kanaujia, “A CPW-Fed compact UWB microstrip antenna,” IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 151–154, 2013.
  4. A. A. Adam, S. K. A. Rahim, K. G. Tan, and A. W. Reza, “Design of 3.1-12 GHz printed elliptical disc monopole antenna with half circular modified ground plane for UWB application,” Wireless Personal Communications, vol. 69, pp. 535–549, 2013. View at Publisher · View at Google Scholar
  5. R. Gonçalves, P. Pinho, and N. B. Carvalho, “Compact, frequency reconfigurable, printed monopole antenna,” International Journal of Antennas and Propagation, Article ID 602780, 2012. View at Publisher · View at Google Scholar
  6. D.-O. Kim, N.-I. Jo, H.-A. Jang, and C.-Y. Kim, “Design of the ultrawideband antenna with a quadruple-band rejection characteristics using a combination of the complementary split ring resonators,” Progress in Electromagnetics Research, vol. 112, pp. 93–107, 2011. View at Scopus
  7. X. Kang, H. Zhang, Z. Li et al., “A band-notched UWB printed half elliptical ring monopole antenna,” Progress in Electromagnetics Research C, vol. 35, pp. 23–33, 2013.
  8. A. Karmakar, R. Ghatak, U. Banerjee, and D. R. Poddar, “An UWB antenna using modified Hilbert curve slot for dual band notch characteristics,” Journal of Electromagnetic Waves and Applications, vol. 27, no. 13, pp. 1620–1631, 2013. View at Publisher · View at Google Scholar
  9. L. Bing and J. S. Hong, “Design of two novel dual band-notched UWB antennas,” International Journal of Antennas AndPropagation, vol. 2012, Article ID 303264, 7 pages, 2012. View at Publisher · View at Google Scholar
  10. N. Ojaroudi and M. Ojaroudi, “Novel design of dual band-notched monopole antenna with bandwidth enhancement for UWB applications,” IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 698–701, 2013.
  11. S. Soltani, M. Azarmanesh, P. Lotfi, and G. Dadashzadeh, “Two novel very small monopole antennas having frequency band notch function using DGS for UWB application,” International Journal of Electronics and Communications, vol. 65, no. 1, pp. 87–94, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Li, H. Q. Zhai, C. Zhu, L. Li, C. H. Liang, and Y. F. Han, “Design and analysis of compact printed dual band-notched ultrawideband (UWB) antenna,” Journal of Electromagnetic Waves and Applications, vol. 27, no. 5, pp. 560–571, 2013.
  13. S. M. Zhang, F. S. Zhang, W. Z. Li, T. Quan, and H. Y. Wu, “A compact UWB monopole antenna with WiMAX and WLAN band rejections,” Progress in Electromagnetics Research Letters, vol. 31, pp. 159–168, 2012.
  14. P. Gao, L. Xiong, J. Dai, S. He, and Y. Zheng, “Compact printed wide-slot UWB antenna with 3.5/5.5-GHz dual band-notched characteristics,” IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 983–986, 2013.
  15. S. K. Mishra, R. K. Gupta, A. Vaidya, and J. Mukherjee, “Low-cost, compact printed circular monopole UWB antenna with 3.5/5.5-GHz dual band-notched characteristics,” Microwave and Optical Technology Letters, vol. 54, no. 1, pp. 242–246, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Kim, N. Kim, and S. Lee, “A broadband antenna using the modified ground plane with a complementary split ring resonator for 5-GHz WLAN band-notched performance,” Microwave and Optical Technology Letters, vol. 54, no. 1, pp. 1–3, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. M. A. Amin, “Design of a CPW-fed band-notched UWB antenna using a feeder-embedded slotline resonator,” International Journal of Antennas and Propagation, vol. 2008, Article ID 564317, 2008. View at Publisher · View at Google Scholar
  18. M. Xie, Q. Guo, and Y. Wu, “Design of a miniaturized UWB antenna with band-notched and high frequency rejection capability,” Journal of Electromagnetic Waves and Applications, vol. 25, no. 8-9, pp. 1103–1112, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. W. Junhui, Y. Yingzeng L Xianglong, and W. Tuo, “Trapezoid UWB antenna with dual band notched characteristics for WiMAX/WLAN bands,” Electronics Letters, vol. 49, no. 11, 2013.
  20. S.-J. Wu and J.-H. Tarng, “Planar band-notched ultra-wideband antenna with square-looped and end-coupled resonator,” IET Microwaves, Antennas and Propagation, vol. 5, no. 10, pp. 1227–1233, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Almalkawi and V. Devabhaktuni, “Ultrawideband antenna with triple band-notched characteristics using closed-loop ring resonators,” IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 959–962, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. Q. Q. Xing, H. C. Yang, D. K. Liu, and L. Yang, “Dual and tri-band-notched ultrawideband (UWB) antennas using compact composite resonators,” Progress in Electromagnetics Research Letters, vol. 42, pp. 177–185, 2013.
  23. X. L. Liu, Y. Z. Yin, J. H. Wang, and J. J. Xie, “Compact dual band-notched UWB antenna with parasitic micro-strip lines and t-shape stub,” Progress in Electromagnetics Research C, vol. 41, pp. 55–66, 2013.
  24. C.-C. Lin, P. Jin, and R. W. Ziolkowski, “Single, dual and tri-band-notched ultrawideband (UWB) antennas using capacitively loaded loop (CLL) resonators,” IEEE Transactions on Antennas and Propagation, vol. 60, no. 1, pp. 102–109, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Tong, Z. Huiqing, L. Guihong, L. Long, and L. Changhong, “Compact UWB band-notched antenna design using interdigital capacitance loading loop resonator,” IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 724–727, 2012.
  26. T. Li, F. F. Huo, H. Q. Zhai, and C. H. Liang, “Compact ultra-wideband antenna with sharp band-notched characteristics for WiMax and WLAN,” Electronics Letters, vol. 48, no. 22, 2012.
  27. S. K. Mishra and J. Mukherjee, “Compact printed dual band-notched U-shape UWB antenna,” Progress In Electromagnetics Research C, vol. 27, pp. 169–181, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. X. H. Wu and Q. X. Chu, “Compact ultra-wideband antenna with dual sharp notch-bands using integrated bandstop filter,” in Proceedings of the Asia-Pacific Conference on Antennas and Propagation, pp. 27–29, IEEE Press, Singapore, August 2012.
  29. W. Jiang and W. Che, “A novel UWB antenna with dual notched bands for WiMAX and WLAN applications,” IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 293–296, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Khalilzadeh, A. E. C. Tan, and K. Rambabu, “Design of an integrated UWB antenna with dual band notch characteristics,” International Journal of Electronics and Communications, vol. 67, pp. 433–437, 2013.
  31. L. Tong, Z. Huiqing, L. Long, L. Changhong, and H. Yinfu, “Compact UWB antenna with tunable band-notched characteristic based on microstrip open-loop resonator,” IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 1584–1587, 2012.
  32. G. Yang, Q. X. CHU, and T. G. Huang, “A compact UWB antenna with sharp dual band-notched characteristics for lower and upper WLAN band,” Progress in Electromagnetics Research C, vol. 29, pp. 135–148, 2012.
  33. L. Xiong and P. Gao, “Dual-band planar monopole antenna for bluetooth and UWB applications with WiMAX and WLAN band-notched,” Progress in Electromagnetics Research Letters, vol. 28, pp. 183–194, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Azim and M. T. Islam, “Compact planar UWB antenna with band notched characteristics for WLAN and DSRC,” Progress in Electromagnetics Research Letters, vol. 133, pp. 391–406, 2013.
  35. M. T. Islam, R. Azim, and A. T. Mobashsher, “Triple band-notched planar UWB antenna using parasitic strips,” Progress in Electromagnetics Research, vol. 129, pp. 161–179, 2012.
  36. J. Y. Kim, B. Oh, N. Kim, and S. Lee, “Triple band-notched UWB antenna based on complementary meander line SRR,” Electronics Letters, vol. 48, no. 15, 2012.
  37. S. Natarajamani, K. B. Santanu, and K. P. Sarat, “A triple band notched planar antenna for UWB applications,” Journal of Electromagnetic Waves and Applications, vol. 27, no. 9, pp. 1178–1186, 2013. View at Publisher · View at Google Scholar
  38. S. K. Mishra, R. Gupta, A. Vaidya, and J. Mukherjee, “Printed fork shaped dual band monopole antenna for bluetooth and UWB applications with 5.5GHZ WLAN band notched characteristics,” Progress In Electromagnetics Research C, vol. 22, pp. 195–210, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. D. Zhou, S. Gao, F. Zhu, R. A. Abd-Alhameed, and J. D. Xu, “A simple and compact planar ultra wide-band antenna with single or dual band-notched characteristics,” Progress in Electromagnetics Research, vol. 123, pp. 47–65, 2012. View at Scopus