About this Journal Submit a Manuscript Table of Contents
International Journal of Breast Cancer
Volume 2011 (2011), Article ID 235926, 8 pages
Research Article

Electric Field Analysis of Breast Tumor Cells

1Anna University, Chennai 600 025, India
2Purdue University, West Lafayette, IN 47907, USA

Received 6 June 2011; Revised 30 August 2011; Accepted 30 August 2011

Academic Editor: E. Y. K. Ng

Copyright © 2011 V. Gowri Sree et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Gehl and P. F. Geertsen, “Efficient palliation of haemorrhaging malignant melanoma skin metastases by electrochemotherapy,” Melanoma Research, vol. 10, no. 6, pp. 585–589, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Gothelf, L. M. Mir, and J. Gehl, “Electrochemotherapy: results of cancer treatment using enhanced delivery of bleomycin by electroporation,” Cancer Treatment Reviews, vol. 29, no. 5, pp. 371–387, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. L. M. Mir, M. Belehradek, C. Domenge et al., “Electrochemotherapy, a novel antitumor treatment: first clinical trial,” Comptes Rendus de l'Academie des Sciences—Serie III, vol. 313, no. 13, pp. 613–618, 1991. View at Scopus
  4. G. A. Hofmann and S. B. Dev, “Electroporation: from research laboratories to clinical practice,” in Proceedings of the 15th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1420–1421, October 1993. View at Scopus
  5. E. Y. K. Ng and W. K. Ng, “Parametric study of the biopotential equation for breast tumour identification using ANOVA and Taguchi method,” Medical and Biological Engineering and Computing, vol. 44, no. 1-2, pp. 131–139, 2006. View at Publisher · View at Google Scholar · View at PubMed
  6. H. P. Schwan, “Dielectric properties of cells and tissues,” in Interactions between Electromagnetic Fields and Cells, A. Chiabrera, C. Nicolin, and H. P. Schwan, Eds., Plenum Press, New York, NY, USA, 1985.
  7. E. Y. K. Ng, W. K. Ng, L. S. J. Sim, and U. Rajendra Acharya, “Numerical modelling of biopotential field for detection of breast tumour,” Computers in Biology and Medicine, vol. 37, no. 8, pp. 1121–1132, 2007. View at Publisher · View at Google Scholar · View at PubMed
  8. E. Y. K. Ng, W. K. Ng, and U. R. Acharya, “Biofield potential simulation as a novel adjunt modality for continuous monitoring of breast lesions: a 3D numerical model,” Journal of Medical Engineering and Technology, vol. 32, no. 1, pp. 40–52, 2008. View at Publisher · View at Google Scholar · View at PubMed
  9. A. J. Surowiec, S. S. Stuchly, J. R. Barr, and A. Swarup, “Dielectric properties of breast carcinoma and the surrounding tissues,” IEEE Transactions on Biomedical Engineering, vol. 35, no. 4, pp. 257–263, 1988. View at Publisher · View at Google Scholar · View at PubMed
  10. A. Ramos, “Effect of the electroporation in the field calculation in biological tissues,” Artificial Organs, vol. 29, no. 6, pp. 510–513, 2005. View at Publisher · View at Google Scholar · View at PubMed
  11. S. Haltiwanger, “The Electrical Properties of cancer Cells,” http://www.royalrife.com/haltiwanger1.pdf, July 2010.
  12. R. P. Joshi and K. H. Schoenbach, “Electroporation dynamics in biological cells subjected to ultrafast electrical pulses: a numerical simulation study,” Physical Review E, vol. 62, no. 1, pp. 1025–1033, 2000. View at Publisher · View at Google Scholar
  13. R. P. Joshi, Q. Hu, R. Aly, K. H. Schoenbach, and H. P. Hjalmarson, “Self-consistent simulations of electroporation dynamics in biological cells subjected to ultrashort electrical pulses,” Physical Review E, vol. 64, no. 1, pp. 011913/1–011913/10, 2001.
  14. G. A. Hofmann, “Instrumentation and electrodes for in vivo electroporation,” in Electrochemotherapy, Electrogenetherapy, and Transdermal Drug Delivery, M. J. Jaroszeski, R. Heller, and R. Gilbert, Eds., Humana Press, 2000.
  15. W. Mitchell and R. Sundararajan, “Electric field distribution in biological tissues for various electrode configurations—a FEMLAB study,” COMSOL Multiphysics, Boston, Mass, USA, 2005.