About this Journal Submit a Manuscript Table of Contents
International Journal of Breast Cancer
Volume 2012 (2012), Article ID 506868, 9 pages
http://dx.doi.org/10.1155/2012/506868
Review Article

Weight Gain, Metabolic Syndrome, and Breast Cancer Recurrence: Are Dietary Recommendations Supported by the Data?

1Department of Radiation Oncology, Kimmel Cancer Center and Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
2Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA

Received 27 April 2012; Accepted 27 August 2012

Academic Editor: Anne Rosenberg

Copyright © 2012 Colin E. Champ et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. H. Eckel, S. M. Grundy, and P. Z. Zimmet, “The metabolic syndrome,” The Lancet, vol. 365, no. 9468, pp. 1415–1428, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Stebbing, A. Sharma, B. North et al., “A metabolic phenotyping approach to understanding relationships between metabolic syndrome and breast tumour responses to chemotherapy,” Annals of Oncology, vol. 23, no. 4, pp. 860–866, 2012. View at Publisher · View at Google Scholar
  3. P. J. Goodwin, M. Ennis, K. I. Pritchard et al., “Insulin- and obesity-related variables in early-stage breast cancer: correlations and time course of prognostic associations,” Journal of Clinical Oncology, vol. 30, no. 2, pp. 164–171, 2012. View at Publisher · View at Google Scholar
  4. E. E. Calle, C. Rodriguez, K. Walker-Thurmond, and M. J. Thun, “Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. Adults,” New England Journal of Medicine, vol. 348, no. 17, pp. 1625–1638, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Ligibel, “Obesity and breast cancer,” Oncology, vol. 25, no. 11, pp. 994–1000, 2011.
  6. P. Pasanisi, F. Berrino, M. De Petris, E. Venturelli, A. Mastroianni, and S. Panico, “Metabolic syndrome as a prognostic factor for breast cancer recurrences,” International Journal of Cancer, vol. 119, no. 1, pp. 236–238, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. N. B. Kumar, A. Cantor, K. Allen, and C. E. Cox, “Android obesity at diagnosis and breast carcinoma survival,” Cancer, vol. 88, no. 12, pp. 2751–2757, 2000.
  8. C. L. Rock and W. Demark-Wahnefried, “Nutrition and survival after the diagnosis of breast cancer: a review of the evidence,” Journal of Clinical Oncology, vol. 20, no. 15, pp. 3302–3316, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. W. L. Donegan, A. J. Hartz, and A. A. Rimm, “The association of body weight with recurrent cancer of the breast,” Cancer, vol. 41, no. 4, pp. 1590–1594, 1978. View at Scopus
  10. J. K. Litton, A. M. Gonzalez-Angulo, C. L. Warneke et al., “Relationship between obesity and pathologic response to neoadjuvant chemotherapy among women with operable breast cancer,” Journal of Clinical Oncology, vol. 26, no. 25, pp. 4072–4077, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. J. K. Camoriano, C. L. Loprinzi, J. N. Ingle, T. M. Therneau, J. E. Krook, and M. H. Veeder, “Weight change in women treated with adjuvant therapy or observed following mastectomy for node-positive breast cancer,” Journal of Clinical Oncology, vol. 8, no. 8, pp. 1327–1334, 1990. View at Scopus
  12. C. H. Kroenke, W. Y. Chen, B. Rosner, and M. D. Holmes, “Weight, weight gain, and survival after breast cancer diagnosis,” Journal of Clinical Oncology, vol. 23, no. 7, pp. 1370–1378, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. W. Demark-Wahnefried, E. P. Winer, and B. K. Rimer, “Why women gain weight with adjuvant chemotherapy for breast cancer,” Journal of Clinical Oncology, vol. 11, no. 7, pp. 1418–1429, 1993. View at Scopus
  14. W. Demark-Wahnefried, B. K. Rimer, and E. P. Winer, “Weight gain in women diagnosed with breast cancer,” Journal of the American Dietetic Association, vol. 97, no. 5, pp. 519–526, 1997. View at Scopus
  15. V. Mohamed-Ali, S. Goodrick, A. Rawesh et al., “Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-α, in vivo,” Journal of Clinical Endocrinology and Metabolism, vol. 82, no. 12, pp. 4196–4200, 1997. View at Scopus
  16. M. A. Rivas, R. P. Carnevale, C. J. Proietti et al., “TNFα acting on TNFR1 promotes breast cancer growth via p42/P44 MAPK, JNK, Akt and NF-κB-dependent pathways,” Experimental Cell Research, vol. 314, no. 3, pp. 509–529, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Madhusudan, M. Foster, S. R. Mathuramalingam et al., “A phase II study of etanercept (Enbrel), a tumor necrosis factor α inhibitor in patients with metastatic breast cancer,” Clinical Cancer Research, vol. 10, no. 19, pp. 6528–6534, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Mantovani, P. Allavena, A. Sica, and F. Balkwill, “Cancer-related inflammation,” Nature, vol. 454, no. 7203, pp. 436–444, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. L. M. Coussens and Z. Werb, “Inflammation and cancer,” Nature, vol. 420, no. 6917, pp. 860–867, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Bachelot, I. Ray-Coquard, C. Menetrier-Caux, M. Rastkha, A. Duc, and J. Y. Blay, “Prognostic value of serum levels of interleukin 6 and of serum and plasma levels of vascular endothelial growth factor in hormone-refractory metastatic breast cancer patients,” British Journal of Cancer, vol. 88, no. 11, pp. 1721–1726, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Salgado, S. Junius, I. Benoy et al., “Circulating interleukin-6 predicts survival in patients with metastatic breast cancer,” International Journal of Cancer, vol. 103, no. 5, pp. 642–646, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. O. I. Ahmed, A. M. Adel, D. R. Diab, and N. S. Gobran, “Prognostic value of serum level of interleukin-6 and interleukin-8 in metastatic breast cancer patients,” The Egyptian Journal of Immunology, vol. 13, no. 2, pp. 61–68, 2006. View at Scopus
  23. G. J. Zhang and I. Adachi, “Serum interleukin-6 levels correlate to tumor progression and prognosis in metastatic breast carcinoma,” Anticancer Research, vol. 19, no. 2, pp. 1427–1432, 1999. View at Scopus
  24. K. V. Albuquerque, M. R. Price, R. A. Badley et al., “Pre-treatment serum levels of tumour markers in metastatic breast cancer: a prospective assessment of their role in predicting response to therapy and survival,” European Journal of Surgical Oncology, vol. 21, no. 5, pp. 504–509, 1995. View at Publisher · View at Google Scholar · View at Scopus
  25. A. M. Al Murri, J. M. S. Bartlett, P. A. Canney, J. C. Doughty, C. Wilson, and D. C. McMillan, “Evaluation of an inflammation-based prognostic score (GPS) in patients with metastatic breast cancer,” British Journal of Cancer, vol. 94, no. 2, pp. 227–230, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. B. L. Pierce, R. Ballard-Barbash, L. Bernstein et al., “Elevated biomarkers of inflammation are associated with reduced survival among breast cancer patients,” Journal of Clinical Oncology, vol. 27, no. 21, pp. 3437–3444, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. A. DeMichele, A. M. Martin, R. Mick et al., “Interleukin-6 - 174G→C polymorphism is associated with improved outcome in high-risk breast cancer,” Cancer Research, vol. 63, no. 22, pp. 8051–8056, 2003. View at Scopus
  28. K. Snoussi, A. D. Strosberg, N. Bouaouina, S. B. Ahmed, and L. Chouchane, “Genetic variation in pro-inflammatory cytokines (interleukin-1β, interleukin-1α and interleukin-6) associated with the aggressive forms, survival, and relapse prediction of breast carcinoma,” European Cytokine Network, vol. 16, no. 4, pp. 253–260, 2005. View at Scopus
  29. C. Garofalo and E. Surmacz, “Leptin and cancer,” Journal of Cellular Physiology, vol. 207, no. 1, pp. 12–22, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. X. Hu, S. C. Juneja, N. J. Maihle, and M. P. Cleary, “Leptin—a growth factor in normal and malignant breast cells and for normal mammary gland development,” Journal of the National Cancer Institute, vol. 94, no. 22, pp. 1704–1711, 2002. View at Scopus
  31. D. Cirillo, A. M. Rachiglio, R. La Montagna, A. Giordano, and N. Normanno, “Leptin signaling in breast cancer: an overview,” Journal of Cellular Biochemistry, vol. 105, no. 4, pp. 956–964, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. M. E. Grossmann, A. Ray, S. Dogan, N. K. Mizuno, and M. P. Cleary, “Balance of adiponectin and leptin modulates breast cancer cell growth,” Cell Research, vol. 18, no. 11, pp. 1154–1156, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Mantzoros, E. Petridou, N. Dessypris et al., “Adiponectin and breast cancer risk,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 3, pp. 1102–1107, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. A. G. Glass, J. V. Lacey, J. D. Carreon, and R. N. Hoover, “Breast cancer incidence, 1980–2006: combined roles of menopausal hormone therapy, screening mammography, and estrogen receptor status,” Journal of the National Cancer Institute, vol. 99, no. 15, pp. 1152–1161, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. C. L. Rock, S. W. Flatt, G. A. Laughlin et al., “Reproductive steroid hormones and recurrence-free survival in women with a history of breast cancer,” Cancer Epidemiology Biomarkers and Prevention, vol. 17, no. 3, pp. 614–620, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Clemons and P. Goss, “Estrogen and the risk of breast cancer,” New England Journal of Medicine, vol. 344, no. 4, pp. 276–285, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. P. K. Siiteri, “Adipose tissue as a source of hormones,” American Journal of Clinical Nutrition, vol. 45, no. 1, pp. 277–282, 1987. View at Scopus
  38. J. A. Cauley, J. P. Gutai, L. H. Kuller, D. LeDonne, and J. G. Powell, “The epidemiology of serum sex hormones in postmenopausal women,” American Journal of Epidemiology, vol. 129, no. 6, pp. 1120–1131, 1989. View at Scopus
  39. D. V. Schapira, N. B. Kumar, and G. H. Lyman, “Obesity, body fat distribution, and sex hormones in breast cancer patients,” Cancer, vol. 67, no. 8, pp. 2215–2218, 1991. View at Scopus
  40. S. Y. Nam, E. J. Lee, K. R. Kim et al., “Effect of obesity on total and free insulin-like growth factor (IGF)-1, and their relationship to IGF-binding protein (BP)-1, IGFBP-2, IGFBP-3, insulin, and growth hormone,” International Journal of Obesity, vol. 21, no. 5, pp. 355–359, 1997. View at Scopus
  41. S. E. Kahn, R. L. Hull, and K. M. Utzschneider, “Mechanisms linking obesity to insulin resistance and type 2 diabetes,” Nature, vol. 444, no. 7121, pp. 840–846, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Ros Pérez and G. Medina-Gómez, “Obesity, adipogenesis and insulin resistance,” Endocrinologia y Nutricion, vol. 58, no. 7, pp. 360–369, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. K. Erickson, R. E. Patterson, S. W. Flatt et al., “Clinically defined type 2 diabetes mellitus and prognosis in early-stage breast cancer,” Journal of Clinical Oncology, vol. 29, no. 1, pp. 54–60, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. P. J. Goodwin, M. Ennis, K. I. Pritchard et al., “Fasting insulin and outcome in early-stage breast cancer: results of a prospective cohort study,” Journal of Clinical Oncology, vol. 20, no. 1, pp. 42–51, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. M. J. Railo, K. V. Smitten, and F. Pekonen, “The prognostic value of insulin-like growth factor-I in breast cancer patients. Results of a follow-up study on 126 patients,” European Journal of Cancer Part A, vol. 30, no. 3, pp. 307–311, 1994. View at Publisher · View at Google Scholar · View at Scopus
  46. B. C. Turner, B. G. Haffty, L. Narayanan et al., “Insulin-like growth factor-I receptor overexpression mediates cellular radioresistance and local breast cancer recurrence after lumpectomy and radiation,” Cancer Research, vol. 57, no. 15, pp. 3079–3083, 1997. View at Scopus
  47. K. B. Nolop, C. G. Rhodes, L. H. Brudin et al., “Glucose utilization in vivo by human pulmonary neoplasms,” Cancer, vol. 60, no. 11, pp. 2682–2689, 1987. View at Scopus
  48. T. Hickish, G. Astras, P. Thomas et al., “Glucose intolerance during adjuvant chemotherapy for breast cancer,” Journal of the National Cancer Institute, vol. 101, no. 7, p. 537, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. M. G. V. Heiden, L. C. Cantley, and C. B. Thompson, “Understanding the warburg effect: the metabolic requirements of cell proliferation,” Science, vol. 324, no. 5930, pp. 1029–1033, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. V. M. Macaulay, “Insulin-like growth factors and cancer,” British Journal of Cancer, vol. 65, no. 3, pp. 311–320, 1992. View at Scopus
  51. V. Papa, V. Pezzino, A. Costantino et al., “Elevated insulin receptor content in human breast cancer,” Journal of Clinical Investigation, vol. 86, no. 5, pp. 1503–1510, 1990. View at Scopus
  52. J. P. Peyrat, J. Bonneterre, B. Hecquet et al., “Plasma insulin-like growth factor-1 (IGF-1) concentrations in human breast cancer,” European Journal of Cancer Part A, vol. 29, no. 4, pp. 492–497, 1993. View at Scopus
  53. R. Baserga, “The contradictions of the insulin-like growth factor 1 receptor,” Oncogene, vol. 19, no. 49, pp. 5574–5581, 2000. View at Scopus
  54. R. Rubin and R. Baserga, “Insulin-like growth factor-I receptor: its role in cell proliferation, apoptosis, and tumorigenicity,” Laboratory Investigation, vol. 73, no. 3, pp. 311–331, 1995. View at Scopus
  55. M. Gafny, A. Silbergeld, B. Klinger, M. Wasserman, and Z. Laron, “Comparative effects of GH, IGF-I and insulin on serum sex hormone binding globulin,” Clinical Endocrinology, vol. 41, no. 2, pp. 169–175, 1994. View at Scopus
  56. R. T. Chlebowski, A. McTiernan, J. Wactawski-Wende et al., et al., “Diabetes, metformin, and breast cancer in postmenopausal women,” Journal of Clinical Oncology. In press.
  57. P. J. Goodwin, J. A. Ligibel, and V. Stambolic, “Metformin in breast cancer: time for action,” Journal of Clinical Oncology, vol. 27, no. 20, pp. 3271–3273, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. K. E. Stanley, “Prognostic factors for survival in patients with inoperable lung cancer,” Journal of the National Cancer Institute, vol. 65, no. 1, pp. 25–32, 1980. View at Scopus
  59. A. Hyltander, C. Drott, U. Korner, R. Sandstrom, and K. Lundholm, “Elevated energy expenditure in cancer patients with solid tumours,” European Journal of Cancer, vol. 27, no. 1, pp. 9–15, 1991. View at Publisher · View at Google Scholar · View at Scopus
  60. C. Arnold and M. P. Richter, “The effect of oral nutritional supplements on head and neck cancer,” International Journal of Radiation Oncology Biology Physics, vol. 16, no. 6, pp. 1595–1599, 1989. View at Scopus
  61. W. K. Evans, D. W. Nixon, and J. M. Daly, “A randomized study of oral nutritional support versus ad lib nutritional intake during chemotherapy for advanced colorectal and non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 5, no. 1, pp. 113–124, 1987. View at Scopus
  62. C. A. Thomson, S. W. Flatt, C. L. Rock, C. Ritenbaugh, V. Newman, and J. P. Pierce, “Increased fruit, vegetable and fiber intake and lower fat intake reported among women previously treated for invasive breast cancer,” Journal of the American Dietetic Association, vol. 102, no. 6, pp. 801–808, 2002. View at Publisher · View at Google Scholar · View at Scopus
  63. W. Demark-Wahnefried, B. Peterson, C. McBride, I. Lipkus, and E. Clipp :, “Current health behaviors and readiness to pursue life-style changes among men and women diagnosed with early stage prostate and breast carcinomas,” Cancer, vol. 88, no. 3, pp. 674–684, 2000.
  64. E. J. Schaefer, J. L. Augustin, M. M. Schaefer et al., “Lack of efficacy of a food-frequency questionnaire in assessing dietary macronutrient intakes in subjects consuming diets of known composition,” American Journal of Clinical Nutrition, vol. 71, no. 3, pp. 746–751, 2000. View at Scopus
  65. V. Kipnis, D. Midthune, L. Freedman et al., “Part E. New statistical approaches to dealing with bias associated with dietary data: bias in dietary-report instruments and its implications for nutritional epidemiology,” Public Health Nutrition, vol. 5, supplement 6, pp. 915–923, 2002. View at Publisher · View at Google Scholar · View at Scopus
  66. V. Kipnis, A. F. Subar, D. Midthune et al., “Structure of dietary measurement error: results of the OPEN biomarker study,” American Journal of Epidemiology, vol. 158, no. 1, pp. 14–21, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. A. R. Kristal, U. Peters, and J. D. Potter, “Is it time to abandon the food frequency questionnaire?” Cancer Epidemiology Biomarkers and Prevention, vol. 14, no. 12, pp. 2826–2828, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. C. L. Rock and W. Demark-Wahnefried, “Can lifestyle modification increase survival in women diagnosed with breast cancer?” Journal of Nutrition, vol. 132, no. 11, pp. 3504S–3509S, 2002. View at Scopus
  69. J. P. Pierce, L. Natarajan, B. J. Caan et al., “Influence of a diet very high in vegetables, fruit, and fiber and low in fat on prognosis following treatment for breast cancer: the Women's Healthy Eating and Living (WHEL) randomized trial,” Journal of the American Medical Association, vol. 298, no. 3, pp. 289–298, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. R. T. Chlebowski, G. L. Blackburn, C. A. Thomson et al., “Dietary fat reduction and breast cancer outcome: interim efficacy results from the women's intervention nutrition study,” Journal of the National Cancer Institute, vol. 98, no. 24, pp. 1767–1776, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. J. P. Pierce, B. J. Caan, C. Ritenbaugh, C. L. Rock, and L. Natarajan, “Diet and breast cancer recurrence—reply,” Journal of the American Medical Association, vol. 298, no. 18, pp. 2135–2136, 2007. View at Scopus
  72. S. M. Gapstur and S. Khan, “Fat, fruits, vegetables, and breast cancer survivorship,” Journal of the American Medical Association, vol. 298, no. 3, pp. 335–336, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. A. H. Hite, V. G. Berkowitz, and K. Berkowitz, “Low-carbohydrate diet review: shifting the paradigm,” Nutrition in Clinical Practice, vol. 26, no. 3, pp. 300–308, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Hession, C. Rolland, U. Kulkarni, A. Wise, and J. Broom, “Systematic review of randomized controlled trials of low-carbohydrate vs. low-fat/low-calorie diets in the management of obesity and its comorbidities,” Obesity Reviews, vol. 10, no. 1, pp. 36–50, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. C. E. Forsythe, S. D. Phinney, M. L. Fernandez et al., “Comparison of low fat and low carbohydrate diets on circulating fatty acid composition and markers of inflammation,” Lipids, vol. 43, no. 1, pp. 65–77, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. J. S. Volek, S. D. Phinney, C. E. Forsythe et al., “Carbohydrate restriction has a more favorable impact on the metabolic syndrome than a low fat diet,” Lipids, vol. 44, no. 4, pp. 297–309, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. P. Seshadri, N. Iqbal, L. Stern et al., “A randomized study comparing the effects of a low-carbohydrate diet and a conventional diet on lipoprotein subfractions and C-reactive protein levels in patients with severe obesity,” American Journal of Medicine, vol. 117, no. 6, pp. 398–405, 2004. View at Publisher · View at Google Scholar · View at Scopus
  78. E. Warensjö, U. Risérus, and B. Vessby, “Fatty acid composition of serum lipids predicts the development of the metabolic syndrome in men,” Diabetologia, vol. 48, no. 10, pp. 1999–2005, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. P. S. Patel, S. J. Sharp, E. Jansen et al., “Fatty acids measured in plasma and erythrocyte-membrane phospholipids and derived by food-frequency questionnaire and the risk of new-onset type 2 diabetes: a pilot study in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk cohort,” American Journal of Clinical Nutrition, vol. 92, no. 5, pp. 1214–1222, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. L. Wang, A. R. Folsom, and J. H. Eckfeldt, “Plasma fatty acid composition and incidence of coronary heart disease in middle aged adults: the Atherosclerosis Risk in Communities (ARIC) Study,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 13, no. 5, pp. 256–266, 2003. View at Publisher · View at Google Scholar · View at Scopus
  81. K. Yamagishi, H. Iso, H. Yatsuya et al., “Dietary intake of saturated fatty acids and mortality from cardiovascular disease in Japanese: the Japan Collaborative Cohort Study for Evaluation of Cancer Risk (JACC) study,” American Journal of Clinical Nutrition, vol. 92, no. 4, pp. 759–765, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. J. Shannon, I. B. King, R. Moshofsky et al., “Erythrocyte fatty acids and breast cancer risk: a case-control study in Shanghai, China,” American Journal of Clinical Nutrition, vol. 85, no. 4, pp. 1090–1097, 2007. View at Scopus
  83. W. S. Yancy Jr., M. K. Olsen, J. R. Guyton, R. P. Bakst, and E. C. Westman, “A low-carbohydrate, ketogenic diet versus a low-fat diet to treat obesity and hyperlipidemia: a randomized, controlled trial,” Annals of Internal Medicine, vol. 140, no. 10, pp. 769–777, 2004. View at Scopus
  84. E. C. Westman, W. S. Yancy, J. S. Edman, K. F. Tomlin, and C. E. Perkins, “Effect of 6-month adherence to a very low carbohydrate diet program,” American Journal of Medicine, vol. 113, no. 1, pp. 30–36, 2002. View at Publisher · View at Google Scholar · View at Scopus
  85. M. C. Gannon and F. Q. Nuttall, “Effect of a high-protein, low-carbohydrate diet on blood glucose control in people with type 2 diabetes,” Diabetes, vol. 53, no. 9, pp. 2375–2382, 2004. View at Publisher · View at Google Scholar · View at Scopus
  86. C. D. Gardner, A. Kiazand, S. Alhassan et al., “Comparison of the Atkins, Zone, Ornish, and LEARN diets for change in weight and related risk factors among overweight premenopausal women: the A to Z weight loss study: a randomized trial,” Journal of the American Medical Association, vol. 297, no. 9, pp. 969–977, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. J. B. Keogh, G. D. Brinkworth, M. Noakes, D. P. Belobrajdic, J. D. Buckley, and P. M. Clifton, “Effects of weight loss from a very-low-carbohydrate diet on endothelial function and markers of cardiovascular disease risk in subjects with abdominal obesity,” American Journal of Clinical Nutrition, vol. 87, no. 3, pp. 567–576, 2008. View at Scopus
  88. S. Buscemi, S. Verga, M. R. Tranchina, S. Cottone, and G. Cerasola, “Effects of hypocaloric very-low-carbohydrate diet vs.Mediterranean diet on endothelial function in obese women,” European Journal of Clinical Investigation, vol. 39, no. 5, pp. 339–347, 2009. View at Publisher · View at Google Scholar · View at Scopus