About this Journal Submit a Manuscript Table of Contents
International Journal of Biodiversity
Volume 2013 (2013), Article ID 824543, 15 pages
Research Article

Temporal Succession of Phytoplankton Assemblages in a Tidal Creek System of the Sundarbans Mangroves: An Integrated Approach

1Integrative Taxonomy and Microbial Ecology Research Group, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata (IISER-K), Mohanpur Campus, Nadia, Mohanpur-741252, West Bengal, India
2Ministry of Environment and Forests, Eastern Regional Office, Chandrasekharpur, Bhubaneswar-751023, Odisha, India
3Sundarbans Programme and Climate Adaptation (Coastal Ecosystems), WWF-India, Jodhpur Park, Kolkata-700068, West Bengal, India

Received 9 April 2013; Accepted 19 May 2013

Academic Editor: Rafael Riosmena-Rodríguez

Copyright © 2013 Dola Bhattacharjee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. E. C. Mantoura, J. M. Martin, and R. Wollast, Ocean Margin Processes in Global Change, John Wiley & Sons, Chichester, UK, 1991.
  2. C. Giri, E. Ochieng, L. L. Tieszen et al., “Status and distribution of mangrove forests of the world using earth observation satellite data,” Global Ecology and Biogeography, vol. 20, no. 1, pp. 154–159, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. A. I. Robertson and S. Blaber, “Plankton, epibenthos and fish communities,” in Tropical Mangrove Ecosystems, A. I. Robertson and D. M. Alongi, Eds., American Geophysical Union, Washington, DC, USA, 1992.
  4. M. Spalding, F. Blasco, and F. Field, World Mangrove Atlas, The International Society for Mangrove Ecosystems, Okinawa, Japan, 1997.
  5. P. Bhadury, “Planktons,” in Environmental Management and Biodiversity Conservation Plan For Sundarbans Biodiversity: State of the Report, A. K. Ghosh, Ed., WWF-India and World Bank, 2013.
  6. M. M. Mamun, M. G. Sarower, M. A. Ali, S. M. B. Rahman, and K. A. Huq, “Abundance and distribution of plankton in the Sundarbans mangrove Forest,” Journal of Innovation and Development Strategy, vol. 3, no. 3, pp. 43–54, 2009.
  7. H. Biswas, M. Dey, D. Ganguly, T. K. De, S. Ghosh, and T. K. Jana, “Comparative analysis of phytoplankton composition and abundance over a two-decade period at the land-ocean boundary of a tropical mangrove ecosystem,” Estuaries and Coasts, vol. 33, no. 2, pp. 384–394, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Manna, K. Chaudhuri, S. Bhattacharyya, and M. Bhattacharyya, “Dynamics of Sundarban estuarine ecosystem: eutrophication induced threat to mangroves,” Saline Systems, vol. 6, no. 1, article 8, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. S. B. Saha, S. B. Bhattacharyya, and A. Choudhury, “Photosynthetic activity in relation to hydrobiological characteristics of a brackishwater tidal ecosystem of Sundarbans in West Bengal, India,” Tropical Ecology, vol. 42, no. 1, pp. 111–115, 2001. View at Scopus
  10. R. Massana, J. Castresana, V. Balagué et al., “Phylogenetic and ecological analysis of novel marine stramenopiles,” Applied and Environmental Microbiology, vol. 70, no. 6, pp. 3528–3534, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. N. J. Fuller, C. Campbell, D. J. Allen et al., “Analysis of photosynthetic picoeukaryote diversity at open ocean sites in the Arabian Sea using a PCR biased towards marine algal plastids,” Aquatic Microbial Ecology, vol. 43, no. 1, pp. 79–93, 2006. View at Scopus
  12. F. R. Tabita, “Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: a different perspective,” Photosynthesis Research, vol. 60, no. 1, pp. 1–28, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. G. M. F. Watson and F. R. Tabita, “Regulation, unique gene organization, and unusual primary structure of carbon fixation genes from a marine phycoerythrin-containing cyanobacterium,” Plant Molecular Biology, vol. 32, no. 6, pp. 1103–1115, 1996. View at Scopus
  14. J. H. Paul, A. Alfreider, and B. Wawrik, “Micro- and macrodiversity in rbcL sequences in ambient phytoplankton populations from the southeastern Gulf of Mexico,” Marine Ecology Progress Series, vol. 198, pp. 9–18, 2000. View at Scopus
  15. B. Wawrik, J. H. Paul, L. Campbell et al., “Vertical structure of the phytoplankton community associated with a coastal plume in the Gulf of Mexico,” Marine Ecology Progress Series, vol. 251, pp. 87–101, 2003. View at Scopus
  16. P. Bhadury and B. B. Ward, “Molecular diversity of marine phytoplankton communities based on key functional genes,” Journal of Phycology, vol. 45, no. 6, pp. 1335–1347, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. K. N. Mukherjee, “Nature and problems of neoreclamation in the Sundarbans,” Indian Journal of Landscape Systems and Ecological Studies, vol. 6, pp. 1–19, 1983.
  18. X. L. Verlencar and S. Desai, Phytoplankton Identification Manual, NIO, Goa, India, 2004.
  19. R. Subrahmanyan, “A systematic account of the marine plankton diatoms of the Madras coast,” Proceedings of the Indian Academy of Sciences B, vol. 24, no. 4, pp. 85–197, 1946. View at Publisher · View at Google Scholar · View at Scopus
  20. T. V. Desikachary, Cyanophyta, Indian Council of Agricultural Research, New Delhi, India, 1959.
  21. T. V. Desikachary, Atlas of Diatoms, Monographs fasicle II, III and IV, Madras Science Foundation, Madras, India, 1987.
  22. H. Hillebrand, C.-D. Dürselen, D. Kirschtel, U. Pollingher, and T. Zohary, “Biovolume calculation for pelagic and benthic microalgae,” Journal of Phycology, vol. 35, no. 2, pp. 403–424, 1999. View at Scopus
  23. D. Bhattacharjee, B. Samanta, A. Danda, and P. Bhadury, “Understanding the impact of climate change in the Sundarbans aquatic ecosystem-phytoplankton as proxies,” in Climate Change and Island and Coastal Vulnerability, J. Sundaresan, S. Sreekesh, A. Ramanathan, L. Sonnenschein, and R. Boojih, Eds., pp. 126–140, Springer, 2013.
  24. M. S. Finch, D. J. Hydes, C. H. Clayson, B. Weigl, J. Dakin, and P. Gwilliam, “A low power ultra violet spectrophotometer for measurement of nitrate in seawater: introduction, calibration and initial sea trials,” Analytica Chimica Acta, vol. 377, no. 2-3, pp. 167–177, 1998. View at Publisher · View at Google Scholar · View at Scopus
  25. J. D. H. Strickland and T. R. Parsons, A Practical Handbook of Seawater Analysis, Fisheries Research Board of Canada, Ottawa, Canada, 1972.
  26. R. E. Turner, N. Qureshi, N. N. Rabalais et al., “Fluctuating silicate:nitrate ratios and coastal plankton food webs,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 22, pp. 13048–13051, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. C. J. Lorenzen, “A method for the continuous measurement of in vivo chlorophyll concentration,” Deep-Sea Research and Oceanographic Abstracts, vol. 13, no. 2, pp. 223–227, 1966. View at Scopus
  28. K. H. Boström, K. Simu, Å. Hagström, and L. Riemann, “Optimization of DNA extraction for quantitative marine bacterioplankton community analysis,” Limnology and Oceanography: Methods, vol. 2, pp. 365–373, 2004. View at Scopus
  29. B. Wawrik, J. H. Paul, and F. R. Tabita, “Real-time PCR quantification of rbcL (ribulose-1,5-bisphosphate carboxylase/oxygenase) mRNA in diatoms and pelagophytes,” Applied and Environmental Microbiology, vol. 68, no. 8, pp. 3771–3779, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. N. Saitou and M. Nei, “The neighbor-joining method: a new method for reconstructing phylogenetic trees,” Molecular Biology and Evolution, vol. 4, no. 4, pp. 406–425, 1987. View at Scopus
  31. K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar, “MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods,” Molecular Biology and Evolution, vol. 29, no. 2, pp. 457–472, 2011.
  32. J. Felsenstein, “Confidence limits on phylogenies: an approach using the bootstrap,” Evolution, vol. 39, no. 4, pp. 783–791, 1985.
  33. P. D. Schloss and J. Handelsman, “Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness,” Applied and Environmental Microbiology, vol. 71, no. 3, pp. 1501–1506, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. T. U. Chan and D. P. Hamilton, “Effect of freshwater flow on the succession and biomass of phytoplankton in a seasonal estuary,” Marine and Freshwater Research, vol. 52, no. 6, pp. 869–884, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Banerjee and S. C. Santra, “Plankton population and population density of the Sundarbans mangrove estuary of West Bengal (India),” in Sundarbans Mangal, D. N. Guha Bakshi, P. Sanyal, and K. R. Naskar, Eds., Naya Prokash, Calcutta, India, 1999.
  36. H. Biswas, S. K. Mukhopadhyay, T. K. De, S. Sen, and T. K. Jana, “Biogenic controls on the air-water carbon dioxide exchange in the Sundarban mangrove environment, northeast coast of Bay of Bengal, India,” Limnology and Oceanography, vol. 49, no. 1, pp. 95–101, 2004. View at Scopus
  37. P. E. Campbell, J. A. Manning, M. K. Webber, and D. F. Webber, “Planktonic communities as indicators of water quality in mangrove lagoons; a Jamaican case study,” Transitional Waters Bulletin, vol. 3, pp. 39–63, 2008.
  38. P. J. Harrison, N. Khan, K. Yin et al., “Nutrient and phytoplankton dynamics in two mangrove tidal creeks of the Indus River delta, Pakistan,” Marine Ecology Progress Series, vol. 157, pp. 13–19, 1997. View at Scopus
  39. K. Tanaka and P.-S. Choo, “Influences of nutrient outwelling from the Mangrove swamp on the distribution of phytoplankton in the Matang Mangrove Estuary, Malaysia,” Journal of Oceanography, vol. 56, no. 1, pp. 69–78, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. V. V. Dham, M. Wafar, and A. M. Heredia, “Nitrogen uptake by size-fractionated phytoplankton in mangrove waters,” Aquatic Microbial Ecology, vol. 41, no. 3, pp. 281–291, 2005. View at Scopus
  41. F. Sylvestre, D. Guiral, and J. P. Debenay, “Modern diatom distribution in mangrove swamps from the Kaw Estuary (French Guiana),” Marine Geology, vol. 208, no. 2-4, pp. 281–293, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. P. K. Bienfang and P. J. Harrison, “Sinking-rate response of natural assemblages of temperate and subtropical phytoplankton to nutrient depletion,” Marine Biology, vol. 83, no. 3, pp. 293–300, 1984. View at Publisher · View at Google Scholar · View at Scopus
  43. L. A. Deegan and R. H. Garritt, “Evidence for spatial variability in estuarine food webs,” Marine Ecology Progress Series, vol. 147, no. 1–3, pp. 31–47, 1997. View at Scopus
  44. H.-L. Hsieh, C.-P. Chen, Y.-G. Chen, and H.-H. Yang, “Diversity of benthic organic matter flows through polychaetes and crabs in a mangrove estuary: δ13C and δ34S signals,” Marine Ecology Progress Series, vol. 227, pp. 145–155, 2002. View at Scopus
  45. S. Soe-modihardjo, “Indonesia,” in Technical Report of the UNDP/UNESCO Research and Training Pilot Programme on Mangrove Ecosystems in Asia and the Pacific, R. M. Umali, P. M. Zamora, R. R. Gotera, R. S. Jara, A. S. Kamacho, and M. Vannucci, Eds., Natural Resources Management Centre and National Mangrove Committee, Ministry of Natural Resources, Manila, Philippines, 1987.
  46. D. M. Alongi, K. G. Boto, and A. I. Robertson, “Nitrogen and phosphorus cycles,” in Tropical Mangrove Ecosystems, A. I. Robertson and D. M. Alongi, Eds., pp. 251–292, American Geophysical Union, Washington, DC, USA, 1992.
  47. E. L. Quinlan and E. J. Phlips, “Phytoplankton assemblages across the marine to low-salinity transition zone in a blackwater dominated estuary,” Journal of Plankton Research, vol. 29, no. 5, pp. 401–416, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. N. Revelante and M. Gilmartin, “The effect of Po river discharge on phytoplankton dynamics in the Northern Adriatic Sea,” Marine Biology, vol. 34, no. 3, pp. 259–271, 1976. View at Scopus
  49. M. W. Wong and D. W. Townsend, “Phytoplankton and hydrography of the Kennebec estuary, Maine, USA,” Marine Ecology Progress Series, vol. 178, pp. 133–144, 1999. View at Scopus
  50. K. Yin, P.-Y. Qian, J. C. Chen, D. P. H. Hsieh, and P. J. Harrison, “Dynamics of nutrients and phytoplankton biomass in the Pearl River estuary and adjacent waters of Hong Kong during summer: preliminary evidence for phosphorus and silicon limitation,” Marine Ecology Progress Series, vol. 194, pp. 295–305, 2000. View at Scopus
  51. N. A. Aizdaicher and Z. V. Markina, “The effect of decrease in salinity on the dynamics of abundance and the cell size of Corethron hystrix (Bacillariophyta) in laboratory culture,” Ocean Science Journal, vol. 45, no. 1, pp. 1–5, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. K. G. Porter, “The plant-animal interface in freshwater ecosystems,” American Scientist, vol. 65, pp. 159–170, 1977.
  53. R. Margalef, “Life forms of phytoplankton as survival alternatives in an unstable environment,” Oceanologica Acta, vol. 1, no. 4, pp. 493–509, 1978.
  54. R. E. H. Smith and J. Kalff, “Competition for phosphorus among co-occurring freshwater phytoplankton,” Limnology and Oceanography, vol. 28, no. 3, pp. 448–464, 1983. View at Scopus
  55. A. K. Mandal, The Sundarbans of India: A Development Analysis, Indus Publishing Company, New Delhi, India, 2003.
  56. J. O. Olomukoro and C. Oronsaye, “The plankton studies of the gulf of Guinea, Nigeria,” Bioscience Research Communications, vol. 21, pp. 71–75, 2009.
  57. M. B. Kutner, “Seasonal variation and phytoplankton distribution in Cananeia region, Brazil,” in Proceedings of the International Symposium on the Biology and Management of Mangroves, G. E. Walsh, S. C. Snedaker, and H. J. Teas, Eds., pp. 153–169, University of Florida, Honolulu, Hawaii, USA, 1975.
  58. M. Ricard, “Primary production in mangrove lagoon waters,” in Hydrobiology of the Mangal, F. D. Por and I. Dor, Eds., Dr. W Junk Publishers, Hague, The Netherlands, 1984.
  59. J. Tundisi, T. M. Tundisi, and M. B. Kutner, “Plankton studies in a mangrove environment. VIII. Further investigations on primary production, standing-stock of phyto- and zooplankton and some environmental factors,” International Review of Hydrobiology, vol. 58, no. 6, pp. 925–940, 1973.
  60. G. B. McManus, “Phytoplankton abundance and pigment changes during simulated in situ dilution experiments in estuarine waters: possible artifacts caused by algal light adaptation,” Journal of Plankton Research, vol. 17, no. 8, pp. 1705–1716, 1995. View at Scopus
  61. E. Valenzuela-Espinoza, R. Millan-Nunez, C. C. Trees, E. Santamaria-del-Angel, and F. Nunez-Cebrero, “Growth and accessory pigments to chlorophyll a ratios of Thalassiosira pseudonana (Bacillariophyceae) cultured under different irradiances,” Hydrobiologia, vol. 17, no. 3, pp. 249–255, 2007.
  62. R. J. Stevenson, “Epilithic and epipelic diatoms in the Sandusky River, with emphasis on species diversity and water pollution,” Hydrobiologia, vol. 114, no. 3, pp. 161–175, 1984. View at Publisher · View at Google Scholar · View at Scopus
  63. D. L. Tison and E. W. Wilde, “Primary production and biovolume of various phototrophic plankton size fraction in three southeastern United States reservoirs,” Applied and Environmental Microbiology, vol. 41, no. 4, pp. 1055–1059, 1981.
  64. K. Chaudhuri, S. Manna, K. S. Sarma, P. Naskar, S. Bhattacharyya, and M. Bhattacharyya, “Physicochemical and biological factors controlling water column metabolism in Sundarbans estuary, India,” Aquatic Biosystems, vol. 8, no. 26, pp. 1–6, 2012.
  65. Y. Takahashi, K. Takishita, K. Koike et al., “Development of molecular probes for Dinophysis (Dinophyceae) plastid: a tool to predict blooming and explore plastid origin,” Marine Biotechnology, vol. 7, no. 2, pp. 95–103, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. P. Bhadury, B. Song, and B. B. Ward, “Intron features of key functional genes mediating nitrogen metabolism in marine phytoplankton,” Marine Genomics, vol. 4, no. 3, pp. 207–213, 2011. View at Publisher · View at Google Scholar · View at Scopus