About this Journal Submit a Manuscript Table of Contents
International Journal of Biomedical Imaging
Volume 2012 (2012), Article ID 864827, 6 pages
http://dx.doi.org/10.1155/2012/864827
Research Article

Real-Time Compressive Sensing MRI Reconstruction Using GPU Computing and Split Bregman Methods

1Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
2Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA
3Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
4Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
5Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA
6Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA

Received 25 July 2011; Revised 25 October 2011; Accepted 31 October 2011

Academic Editor: Yibin Zheng

Copyright © 2012 David S. Smith et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Akcakaya, S. Nam, P. Hu et al., “Compressed sensing with wavelet domain dependencies for coronary MRI: a retrospective study,” IEEE Transactions on Medical Imaging, vol. 30, no. 5, pp. 1090–1099, 2011. View at Publisher · View at Google Scholar
  2. J. P. Haldar, D. Hernando, and Z.-P. Liang, “Compressed-Sensing MRI With Random Encoding,” IEEE Transactions on Medical Imaging, vol. 30, no. 4, pp. 893–903, 2011.
  3. R. Otazo, D. Kim, L. Axel, and D. K. Sodickson, “Combination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion MRI,” Magnetic Resonance in Medicine, vol. 64, no. 3, pp. 767–776, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Zhao, J. P. Haldar, C. Brinegar, and Z. P. Liang, “Low rank matrix recovery for real-time cardiac MRI,” in Proceedings of the 7th IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI '10), pp. 996–999, Rotterdam, The Netherlands, April 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: the application of compressed sensing for rapid MR imaging,” Magnetic Resonance in Medicine, vol. 58, no. 6, pp. 1182–1195, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. M. S. Hansen, D. Atkinson, and T. S. Sorensen, “Cartesian SENSE and k-t SENSE reconstruction using commodity graphics hardware,” Magnetic Resonance in Medicine, vol. 59, no. 3, pp. 463–468, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. T. S. Sorensen, T. Schaeffter, K. O. Noe, and M. S. Hansen, “Accelerating the nonequispaced fast fourier transform on commodity graphics hardware,” IEEE Transactions on Medical Imaging, vol. 27, no. 4, Article ID 4359078, pp. 538–547, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. S. S. Stone, J. P. Haldar, S. C. Tsao, W. M. W. Hwu, B. P. Sutton, and Z. P. Liang, “Accelerating advanced MRI reconstructions on GPUs,” Journal of Parallel and Distributed Computing, vol. 68, no. 10, pp. 1307–1318, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. X. Jia, Y. Lou, R. Li, W. Y. Song, and S. B. Jiang, “GPU-based fast cone beam CT reconstruction from undersampled and noisy projection data via total variation,” Medical Physics, vol. 37, no. 4, pp. 1757–1760, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,” The SIAM Journal on Scientific Computing, vol. 20, no. 1, pp. 33–61, 1998. View at Scopus
  11. S. J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “An interior-point method for large-scale 1-regularized least squares,” IEEE Journal on Selected Topics in Signal Processing, vol. 1, no. 4, pp. 606–617, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. I. Daubechies, M. Defrise, and C. de Mol, “An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,” Communications on Pure and Applied Mathematics, vol. 57, no. 11, pp. 1413–1457, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Hale, W. Yin, and Y. Zhang, “Fixed-point continuation for l1-minimization: methodology and convergence,” Tech. Rep. TR07-07, Department of Computational and Applied Mathematics, Rice University, Houston, Tex, USA, 2007.
  14. E. van den Berg and M. P. Friedlander, “Probing the pareto frontier for basis pursuit solutions,” The SIAM Journal on Scientific Computing, vol. 31, no. 2, pp. 890–912, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems,” IEEE Journal on Selected Topics in Signal Processing, vol. 1, no. 4, pp. 586–597, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Goldstein and S. Osher, “The split Bregman methods for L1 regularized problems,” The SIAM Journal on Imaging Sciences, vol. 2, pp. 323–343, 2009.