About this Journal Submit a Manuscript Table of Contents
International Journal of Biomaterials
Volume 2011 (2011), Article ID 129727, 9 pages
http://dx.doi.org/10.1155/2011/129727
Research Article

Biphasic Calcium Phosphate Bioceramics for Orthopaedic Reconstructions: Clinical Outcomes

1Department of Orthopaedic Surgery, Hospital São Bento Cardioclinica Ltda., Rua Crucis 50, 30.360-290 Belo Horizonte, Minas Gerais, Brazil
2Department of Orthopedic Surgery, Federal University of São Paulo, Rua Borges Lagoa 783, 04038-032 São Paulo, Brazil
3Department of Morphology, Federal University of São Paulo, Rua Botucatu 740, 04023-900 São Paulo, Brazil
4Department of Biomaterials and Biomimetics, New York University College of Dentistry, 345 East 24th Street, New York, NY 10010, USA

Received 15 January 2011; Accepted 20 April 2011

Academic Editor: Joo L. Ong

Copyright © 2011 Carlos A. Garrido et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Z. LeGeros, “Calcium phosphate materials in restorative dentistry: a review,” Advances in Dental Research, vol. 2, no. 1, pp. 164–180, 1988. View at Scopus
  2. E. B. Nery, R. Z. LeGeros, K. L. Lynch, and K. Lee, “Tissue response to biphasic calcium phosphate ceramic with different ratios of HA/beta TCP in periodontal osseous defects,” Journal of Periodontology, vol. 63, no. 9, pp. 729–735, 1992.
  3. R. Z. LeGeros, G. Daculsi, E. Nery, K. Lynch, and B. Kerebel, “In vivo transformation of biphasic calcium phosphates of varying β-TCP:HA ratios: ultrastructural characterization,” in Proceedings of the 3rd World Biomaterials Congress, 1988.
  4. R. Z. LeGeros, “Variability of β-TCP-HAP ratios in sintered “apatites”,” in Proceedings of the Annual Meeting of the Rochester Section of the American Association for Dental Research (AADR '86), Washington, DC, USA, 1986.
  5. R. Z. LeGeros and G. Daculsi, “In vivo transformation of biphasic calcium phosphate ceramics: ultrastructural and physico-chemical characterizations,” in Handbook of Bioactive Ceramics, T. Yamamuro and J. Wilson-Hench, Eds., vol. 11, pp. 17–28, CRC Press, Boca Raton, Fla, USA, 1997.
  6. G. Daculsi, N. Passuti, S. Martin, C. Deudon, R. Z. Legeros, and S. Raher, “Macroporous calcium phosphate ceramic for long bone surgery in humans and dogs. Clinical and histological study,” Journal of Biomedical Materials Research, vol. 24, no. 3, pp. 379–396, 1990. View at Scopus
  7. G. Daculsi, O. Laboux, O. Malard, and P. Weiss, “Current state of the art of biphasic calcium phosphate bioceramics,” Journal of Materials Science: Materials in Medicine, vol. 14, no. 3, pp. 195–200, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Daculsi and R. LeGeros, “Biphasic calcium phosphate (BCP) bioceramics: chemical, physical and biological properties,” Encyclopedia of Biomaterials and Biomedical Engineering, pp. 1–1, 2006.
  9. D. Arcos, I. Izquierdo-Barba, and M. Vallet-Regí, “Promising trends of bioceramics in the biomaterials field,” Journal of Materials Science: Materials in Medicine, vol. 20, no. 2, pp. 447–455, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. R. Z. Legeros, S. Lin, R. Rohanizadeh, D. Mijares, and J. P. Legeros, “Biphasic calcium phosphate bioceramics: preparation, properties and applications,” Journal of Materials Science: Materials in Medicine, vol. 14, no. 3, pp. 201–209, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Z. Legeros, “Biodegradation and bioresorption of calcium phosphate ceramics,” Clinical Materials, vol. 14, no. 1, pp. 65–88, 1993. View at Scopus
  12. O. Gauthier, J. M. Bouler, E. Aguado, R. Z. Legeros, P. Pilet, and G. Daculsi, “Elaboration conditions influence physicochemical properties and in vivo bioactivity of macroporous biphasic calcium phosphate ceramics,” Journal of Materials Science: Materials in Medicine, vol. 10, no. 4, pp. 199–204, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. R. Duan, Z. R. Zhang, C. Y. Wang, J. Y. Chen, and X. D. Zhang, “Dynamic study of calcium phosphate formation on porous HA/TCP ceramics,” Journal of Materials Science: Materials in Medicine, vol. 15, no. 11, pp. 1205–1211, 2004. View at Scopus
  14. R. Xin, Y. Leng, J. Chen, and Q. Zhang, “A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo,” Biomaterials, vol. 26, no. 33, pp. 6477–6486, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. F. Barrère, C. A. van Blitterswijk, and K. de Groot, “Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics,” International Journal of Nanomedicine, vol. 1, no. 3, pp. 317–332, 2006. View at Scopus
  16. F. Barrère, C. A. van Blitterswijk, and K. de Groot, “Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics,” International Journal of Nanomedicine, vol. 1, no. 3, pp. 317–332, 2006.
  17. H. Yuan, C. A. van Blitterswijk, K. De Groot, and J. D. De Bruijn, “A comparison of bone formation in biphasic calcium phosphate (BCP) and hydroxyapatite (HA) implanted in muscle and bone of dogs at different time periods,” Journal of Biomedical Materials Research A, vol. 78, no. 1, pp. 139–147, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. W. G. De Long Jr., T. A. Einhorn, K. Koval et al., “Bone grafts and bone graft substitutes in orthopaedic trauma surgery,” The Journal of Bone and Joint Surgery. American Volume, vol. 89, no. 3, pp. 649–658, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. Z. Zyman, V. Glushko, N. Dedukh, S. Malyshkina, and N. Ashukina, “Porous calcium phosphate ceramic granules and their behaviour in differently loaded areas of skeleton,” Journal of Materials Science: Materials in Medicine, vol. 19, no. 5, pp. 2197–2205, 2008. View at Publisher · View at Google Scholar · View at PubMed
  20. S. E. Lobo, F. H. L. Wykrota, A. C. M. B. Oliveira, I. Kerkis, G. B. Mahecha, and H. J. Alves, “Quantification of bone mass gain in response to the application of biphasic bioceramics and platelet concentrate in critical-size bone defects,” Journal of Materials Science: Materials in Medicine, vol. 20, no. 5, pp. 1137–1147, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. L. P. D'Andrea, R. R. Betz, L. G. Lenke et al., “Do radiographic parameters correlate with clinical outcomes in adolescent idiopathic scoliosis?” Spine, vol. 25, no. 14, pp. 1795–1802, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. A. S. Shanbhag, J. J. Jacobs, J. Black, J. O. Galante, and T. T. Glant, “Macrophage/particle interactions: effect of size, composition and surface area,” Journal of Biomedical Materials Research, vol. 28, no. 1, pp. 81–90, 1994. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. P. Laquerriere, A. Grandjean-Laquerriere, E. Jallot, G. Balossier, P. Frayssinet, and M. Guenounou, “Importance of hydroxyapatite particles characteristics on cytokines production by human monocytes in vitro,” Biomaterials, vol. 24, no. 16, pp. 2739–2747, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Y. Lim and H. J. Donahue, “Biomaterial characteristics important to skeletal tissue engineering,” Journal of Musculoskeletal Neuronal Interactions, vol. 4, no. 4, pp. 396–398, 2004. View at Scopus
  25. J. Y. Lim, A. D. Dreiss, Z. Zhou et al., “The regulation of integrin-mediated osteoblast focal adhesion and focal adhesion kinase expression by nanoscale topography,” Biomaterials, vol. 28, no. 10, pp. 1787–1797, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. J. L. Rouvillain, F. Lavallé, H. Pascal-Mousselard, Y. Catonné, and G. Daculsi, “Clinical, radiological and histological evaluation of biphasic calcium phosphate bioceramic wedges filling medial high tibial valgisation osteotomies,” The Knee, vol. 16, no. 5, pp. 392–397, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. M. Ozalay, O. Sahin, S. Akpinar, G. Ozkoc, M. Cinar, and N. Cesur, “Remodeling potentials of biphasic calcium phosphate granules in open wedge high tibial osteotomy,” Archives of Orthopaedic and Trauma Surgery, vol. 129, no. 6, pp. 747–752, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. N. Rochet, A. Loubat, J. P. Laugier et al., “Modification of gene expression induced in human osteogenic and osteosarcoma cells by culture on a biphasic calcium phosphate bone substitute,” Bone, vol. 32, no. 6, pp. 602–610, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Ye, X. Lu, B. Lu et al., “A long-term evaluation of osteoinductive HA/β-TCP ceramics in vivo: 4.5 Years study in pigs,” Journal of Materials Science: Materials in Medicine, vol. 18, no. 11, pp. 2173–2178, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. L. L. Wykrota, F. H. L. Wykrota, and C. A. Garrido, “Long-term regeneration in large human defect using calcium-phosphate particulate,” in Bone Engineering, J. E. Davies, Ed., pp. 516–524, Em2 Inc, Toronto, Canada, 2000.
  31. K. A. Hing, L. F. Wilson, and T. Buckland, “Comparative performance of three ceramic bone graft substitutes,” Spine Journal, vol. 7, no. 4, pp. 475–490, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. D. J. Hak, “The use of osteoconductive bone graft substitutes in orthopaedic trauma,” Journal of the American Academy of Orthopaedic Surgeons, vol. 15, no. 9, pp. 525–536, 2007. View at Scopus
  33. U. Ripamonti, “Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models,” Biomaterials, vol. 17, no. 1, pp. 31–35, 1996. View at Scopus
  34. K. A. Hing, I. R. Gibson, P. A. Revell, S. M. Best, and W. Bonfield, “Influence of phase purity on the in vivo response to hydroxyapatite,” Key Engineering Materials, vol. 192–195, pp. 373–376, 2001. View at Scopus
  35. A. O. Ransford, T. Morley, M. A. Edgar et al., “Synthetic porous ceramic compared with autograft in scoliosis surgery,” The Journal of Bone and Joint Surgery. British Volume, vol. 80, no. 1, pp. 13–18, 1998. View at Publisher · View at Google Scholar
  36. R. Cavagna, G. Daculsi, and J. M. Bouler, “Macroporous calcium phosphate ceramic: a prospective study of 106 cases in lumbar spinal fusion,” Journal of Long-Term Effects of Medical Implants, vol. 9, no. 4, pp. 403–412, 1999. View at Scopus
  37. C. Nich, P. Bizot, R. Nizard, and L. Sedel, “Femoral reconstruction with macroporous biphasic calcium phosphate ceramic in revision hip replacement,” Key Engineering Materials, vol. 240–242, pp. 853–856, 2003. View at Scopus
  38. O. S. Schindler, S. R. Cannon, T. W. Briggs, and G. W. Blunn, “Composite ceramic bone graft substitute in the treatment of locally aggressive benign bone tumours,” Journal of Orthopaedic Surgery, vol. 16, no. 1, pp. 66–74, 2008. View at Scopus
  39. T. Yamamoto, T. Onga, T. Marui, and K. Mizuno, “Use of hydroxyapatite to fill cavities after excision of benign bone tumours,” The Journal of Bone and Joint Surgery. British Volume, vol. 82, no. 8, pp. 1117–1120, 2000.
  40. M. Bagot D'Arc and G. Daculsi, “Micro macroporous biphasic ceramics and fibrin sealant as a moldable material for bone reconstruction in chronic otitis media surgery. A 15 years experience,” Journal of Materials Science: Materials in Medicine, vol. 14, no. 3, pp. 229–233, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Nich and L. Sedel, “Bone substitution in revision hip replacement,” International Orthopaedics, vol. 30, no. 6, pp. 525–531, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. M. Marcacci, E. Kon, V. Moukhachev et al., “Stem cells associated with macroporous bioceramics for long bone repair: 6- To 7-year outcome of a pilot clinical study,” Tissue Engineering, vol. 13, no. 5, pp. 947–955, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. S. Paderni, S. Terzi, and L. Amendola, “Major bone treatment with an osteoconductive bone substitute,” Musculoskeletal Surgery, vol. 93, no. 2, pp. 89–96, 2009.