About this Journal Submit a Manuscript Table of Contents
International Journal of Biomaterials
Volume 2012 (2012), Article ID 159484, 12 pages
http://dx.doi.org/10.1155/2012/159484
Research Article

Mineralization Potential of Electrospun PDO-Hydroxyapatite-Fibrinogen Blended Scaffolds

1Tissue Engineering Laboratory, Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, East Hall, Room E1254, 401 W. Main St, P.O. Box 843067, Richmond, VA 23284-3067, USA
2School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298-0566, USA
3Physical Medicine and Rehabilitation Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA 23249, USA
4Biomaterials Laboratory, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298-0566, USA

Received 11 May 2012; Accepted 5 July 2012

Academic Editor: Mervi Puska

Copyright © 2012 Isaac A. Rodriguez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The current bone autograft procedure for cleft palate repair presents several disadvantages such as limited availability, additional invasive surgery, and donor site morbidity. The present preliminary study evaluates the mineralization potential of electrospun polydioxanone:nano-hydroxyapatite : fibrinogen (PDO : nHA : Fg) blended scaffolds in different simulated body fluids (SBF). Scaffolds were fabricated by blending PDO : nHA : Fg in the following percent by weight ratios: 100 : 0 : 0, 50 : 25 : 25, 50 : 50 : 0, 50 : 0 : 50, 0 : 0 : 100, and 0 : 50 : 50. Samples were immersed in (conventional (c), revised (r), ionic (i), and modified (m)) SBF for 5 and 14 days to induce mineralization. Scaffolds were characterized before and after mineralization via scanning electron microscopy, Alizarin Red-based assay, and modified burnout test. The addition of Fg resulted in scaffolds with smaller fiber diameters. Fg containing scaffolds also induced sheet-like mineralization while individual fiber mineralization was noticed in its absence. Mineralized electrospun Fg scaffolds without PDO were not mechanically stable after 5 days in SBF, but had superior mineralization capabilities which produced a thick bone-like mineral (BLM) layer throughout the scaffolds. 50 : 50 : 0 scaffolds incubated in either r-SBF for 5 days or c-SBF for 14 days produced scaffolds with high mineral content and individual-mineralized fibers. These mineralized scaffolds were still porous and will be further optimized as an effective bone substitute in future studies.