About this Journal Submit a Manuscript Table of Contents
International Journal of Biomaterials
Volume 2012 (2012), Article ID 159484, 12 pages
http://dx.doi.org/10.1155/2012/159484
Research Article

Mineralization Potential of Electrospun PDO-Hydroxyapatite-Fibrinogen Blended Scaffolds

1Tissue Engineering Laboratory, Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, East Hall, Room E1254, 401 W. Main St, P.O. Box 843067, Richmond, VA 23284-3067, USA
2School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298-0566, USA
3Physical Medicine and Rehabilitation Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA 23249, USA
4Biomaterials Laboratory, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298-0566, USA

Received 11 May 2012; Accepted 5 July 2012

Academic Editor: Mervi Puska

Copyright © 2012 Isaac A. Rodriguez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. D. Fallin, J. B. Hetmanski, J. Park et al., “Family-based analysis of MSX1 haplotypes for association with oral clefts,” Genetic Epidemiology, vol. 25, no. 2, pp. 168–175, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. Z. Zhang, Y. Song, X. Zhao, X. Zhang, C. Fermin, and Y. Chen, “Rescue of cleft palate in Msx1-deficient mice by transgenic Bmp4 reveals a network of BMP and Shh signaling in the regulation of mammalian palatogenesis,” Development, vol. 129, no. 17, pp. 4135–4146, 2002. View at Scopus
  3. J. R. Sandy, “Molecular, clinical and political approaches to the problem of cleft lip and palate,” Surgeon, vol. 1, no. 1, pp. 9–16, 2003. View at Scopus
  4. A. M. Sadove, J. A. Van Aalst, and J. A. Culp, “Cleft palate repair: art and issues,” Clinics in Plastic Surgery, vol. 31, no. 2, pp. 231–241, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. J. L. Moreau, J. F. Caccamese, D. P. Coletti, J. J. Sauk, and J. P. Fisher, “Tissue engineering solutions for cleft palates,” Journal of Oral and Maxillofacial Surgery, vol. 65, no. 12, pp. 2503–2511, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Logeart-Avramoglou, F. Anagnostou, R. Bizios, and H. Petite, “Engineering bone: challenges and obstacles,” Journal of Cellular and Molecular Medicine, vol. 9, no. 1, pp. 72–84, 2005. View at Scopus
  7. S. S. Kim, M. Sun Park, O. Jeon, C. Yong Choi, and B. S. Kim, “Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering,” Biomaterials, vol. 27, no. 8, pp. 1399–1409, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. A. A. Al-Munajjed, N. A. Plunkett, J. P. Gleeson et al., “Development of a biomimetic collagen-hydroxyapatite scaffold for bone tissue engineering using a SBF immersion technique,” Journal of Biomedical Materials Research, vol. 90, no. 2, pp. 584–591, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. S. S. Kim, K. M. Ahn, M. S. Park, J. H. Lee, C. Y. Choi, and B. S. Kim, “A poly(lactide-co-glycolide)/hydroxyapatite composite scaffold with enhanced osteoconductivity,” Journal of Biomedical Materials Research, vol. 80, no. 1, pp. 206–215, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. J. R. Venugopal, S. Low, A. T. Choon, A. B. Kumar, and S. Ramakrishna, “Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration,” Artificial Organs, vol. 32, no. 5, pp. 388–397, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. S. S. Kim, M. S. Park, S. J. Gwak, C. Y. Choi, and B. S. Kim, “Accelerated bonelike apatite growth on porous polymer/ceramic composite scaffolds in vitro,” Tissue Engineering, vol. 12, no. 10, pp. 2997–3006, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Abarrategi, C. Moreno-Vicente, F. J. Martinez-Vazquez, A. Civantos, V. Ramos, J. V. Sanz-Casado, et al., “Biological properties of solid free form designed ceramic scaffolds with BMP-2: in vitro and in vivo evaluation,” PLoS ONE, vol. 7, no. 3, Article ID e34117, 2012.
  13. A. Elshahat, “Correction of craniofacial skeleton contour defects using bioactive glas particles,” Egyptian Journal of Plastic and Reconstructive Surgery, vol. 30, no. 2, pp. 113–119, 2006.
  14. Z. L. Ni, H. S. Liu, Q. Y. Qu, H. L. Lu, B. Yan, and Q. H. Zhang, “Using of titanium mesh for the reconstruction of skull base defect,” Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi, vol. 41, no. 5, pp. 351–354, 2006. View at Scopus
  15. E. K. Moioli, P. A. Clark, X. Xin, S. Lal, and J. J. Mao, “Matrices and scaffolds for drug delivery in dental, oral and craniofacial tissue engineering,” Advanced Drug Delivery Reviews, vol. 59, no. 4-5, pp. 308–324, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. J. E. Zins, A. Moreira-Gonzalez, A. Parikh, E. Arslan, T. Bauer, and M. Siemionow, “Biomechanical and histologic evaluation of the Norian Craniofacial Repair System and Norian Craniofacial Repair System Fast Set Putty in the long-term reconstruction of full-thickness skull defects in a sheep model,” Plastic and Reconstructive Surgery, vol. 121, no. 5, pp. 271e–282e, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. J. R. Porter, T. T. Ruckh, and K. C. Popat, “Bone tissue engineering: a review in bone biomimetics and drug delivery strategies,” Biotechnology Progress, vol. 25, no. 6, pp. 1539–1560, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Ciardelli, P. Gentile, V. Chiono et al., “Enzymatically crosslinked porous composite matrices for bone tissue regeneration,” Journal of Biomedical Materials Research, vol. 92, no. 1, pp. 137–151, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Weiner and W. Traub, “Bone structure: from angstroms to microns,” The FASEB Journal, vol. 6, no. 3, pp. 879–885, 1992. View at Scopus
  20. J. Salo, “Bone resorbing osteoclasts reveal two basal plasma membrane domains and transcytosis of degraded matrix material,” Anatomy and Cell Biology, 2002.
  21. J. H. Jang, O. Castano, and H. W. Kim, “Electrospun materials as potential platforms for bone tissue engineering,” Advanced Drug Delivery Reviews, vol. 61, no. 12, pp. 1065–1083, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. P. A. Madurantakam, I. A. Rodriguez, C. P. Cost et al., “Multiple factor interactions in biomimetic mineralization of electrospun scaffolds,” Biomaterials, vol. 30, no. 29, pp. 5456–5464, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. W. L. Murphy, D. H. Kohn, and D. J. Mooney, “Growth of continuous bonelike mineral within porous poly(lactide-co-glycolide) scaffolds in vitro,” Journal of Biomedical Materials Research, vol. 50, no. 1, pp. 50–58, 2000.
  24. X. Li, J. Xie, X. Yuan, and Y. Xia, “Coating electrospun poly(ε-caprolactone) fibers with gelatin and calcium phosphate and their use as biomimetic scaffolds for bone tissue engineering,” Langmuir, vol. 24, no. 24, pp. 14145–14150, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Chen, B. Chu, and B. S. Hsiao, “Mineralization of hydroxyapatite in electrospun nanofibrous poly(L-lactic acid) scaffolds,” Journal of Biomedical Materials Research, vol. 79, no. 2, pp. 307–317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Zhang, J. Chang, and Y. Zeng, “Fabrication of fibrous poly(butylene succinate)/wollastonite/apatite composite scaffolds by electrospinning and biomimetic process,” Journal of Materials Science: Materials in Medicine, vol. 19, no. 1, pp. 443–449, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Oyane, M. Uchida, Y. Yokoyama, C. Choong, J. Triffitt, and A. Ito, “Simple surface modification of poly(ε-caprolactone) to induce its apatite-forming ability,” Journal of Biomedical Materials Research, vol. 75, no. 1, pp. 138–145, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Shin, A. C. Jayasuriya, and D. H. Kohn, “Effect of ionic activity products on the structure and composition of mineral self assembled on three-dimensional poly(lactide-co-glycolide) scaffolds,” Journal of Biomedical Materials Research, vol. 83, no. 4, pp. 1076–1086, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, and T. Yamamuro, “Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3,” Journal of Biomedical Materials Research, vol. 24, no. 6, pp. 721–734, 1990. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Kokubo and H. Takadama, “How useful is SBF in predicting in vivo bone bioactivity?” Biomaterials, vol. 27, no. 15, pp. 2907–2915, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. J. A. Hubbell, “Biomaterials in tissue engineering,” Nature Biotechnology, vol. 13, no. 6, pp. 565–576, 1995. View at Scopus
  32. S. A. Sell, M. P. Francis, K. Garg, M. J. McClure, D. G. Simpson, and G. L. Bowlin, “Cross-linking methods of electrospun fibrinogen scaffolds for tissue engineering applications,” Biomedical Materials, vol. 3, no. 4, Article ID 045001, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. M. C. McManus, E. D. Boland, D. G. Simpson, C. P. Barnes, and G. L. Bowlin, “Electrospun fibrinogen: feasibility as a tissue engineering scaffold in a rat cell culture model,” Journal of Biomedical Materials Research, vol. 81, no. 2, pp. 299–309, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. C. R. Carlisle, C. Coulais, M. Namboothiry, D. L. Carroll, R. R. Hantgan, and M. Guthold, “The mechanical properties of individual, electrospun fibrinogen fibers,” Biomaterials, vol. 30, no. 6, pp. 1205–1213, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. R. F. Doolittle, “Fibrinogen and fibrin,” Annual Review of Biochemistry, vol. 53, pp. 195–229, 1984. View at Scopus
  36. J. K. Erban, “P-selectin and wound healing,” Behring Institute Mitteilungen, no. 92, pp. 248–257, 1993. View at Scopus
  37. P. H. Weigel, G. M. Fuller, and R. D. LeBoeuf, “A model for the role of hyaluronic acid and fibrin in the early events during the inflammatory response and wound healing,” Journal of Theoretical Biology, vol. 119, no. 2, pp. 219–234, 1986. View at Scopus
  38. M. C. McManus, E. D. Boland, H. P. Koo et al., “Mechanical properties of electrospun fibrinogen structures,” Acta Biomaterialia, vol. 2, no. 1, pp. 19–28, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Sell, C. Barnes, D. Simpson, and G. Bowlin, “Scaffold permeability as a means to determine fiber diameter and pore size of electrospun fibrinogen,” Journal of Biomedical Materials Research, vol. 85, no. 1, pp. 115–126, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Oyane, H. M. Kim, T. Furuya, T. Kokubo, T. Miyazaki, and T. Nakamura, “Preparation and assessment of revised simulated body fluids,” Journal of Biomedical Materials Research, vol. 65, no. 2, pp. 188–195, 2003. View at Scopus
  41. C. A. Gregory, W. G. Gunn, A. Peister, and D. J. Prockop, “An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction,” Analytical Biochemistry, vol. 329, no. 1, pp. 77–84, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. Song, S. Wen, and M. Li, “The investigation on preparation & physicochemical process of nanosized hydroxyapatite powder,” in Proceedings of the Materials Research Society Symposium, pp. 135–140, April 2002. View at Scopus
  43. J. C. Elliott, Structure and Chemistry of Apatites and Other Calcium Orthophosphates, Elsevier, 1994.
  44. H. M. Kim, K. Kishimoto, F. Miyaji, T. Kokubo, T. Yao, Y. Suetsugu, et al., “Composition and structure of the apatite formed on PET substrates in SBF modified with various ionic activity products,” Journal of Biomedical Materials Research, vol. 46, no. 2, pp. 228–235, 1999.
  45. H. M. Kim, K. Kishimoto, F. Miyaji et al., “Composition and structure of apatite formed on organic polymer in simulated body fluid with a high content of carbonate ion,” Journal of Materials Science: Materials in Medicine, vol. 11, no. 7, pp. 421–426, 2000. View at Publisher · View at Google Scholar · View at Scopus