About this Journal Submit a Manuscript Table of Contents
International Journal of Biomaterials
Volume 2012 (2012), Article ID 290179, 7 pages
http://dx.doi.org/10.1155/2012/290179
Research Article

Preparation of Bioactive Titanium Surfaces via Fluoride and Fibronectin Retention

1Biomaterials Laboratory, Instituto Militar de Engenharia, Pr Gen Tibúrcio 80, 22290-270 Rio de Janeiro, RJ, Brazil
2Avenue Carlos Chagas Filho, 373, Cidade Universitária-21941-902 Rio de janeiro, RJ, Brazil
3Rodovia Washington Luís km 235, 13565-905 São Carlos, SP, Brazil

Received 4 August 2012; Accepted 26 September 2012

Academic Editor: Paulo Guilherme Coelho

Copyright © 2012 Carlos Nelson Elias et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Statement of Problem. The chemical or topographic modification of the dental implant surface can affect bone healing, promote accelerated osteogenesis, and increase bone-implant contact and bonding strength. Objective. In this work, the effects of dental implant surface treatment and fibronectin adsorption on the adhesion of osteoblasts were analyzed. Materials and Methods. Two titanium dental implants (Porous-acid etching and PorousNano-acid etching followed by fluoride ion modification) were characterized by high-resolution scanning electron microscopy, atomic force microscopy, and X-ray diffraction before and after the incorporation of human plasma fibronectin (FN). The objective was to investigate the biofunctionalization of these surfaces and examine their effects on the interaction with osteoblastic cells. Results. The evaluation techniques used showed that the Porous and PorousNano implants have similar microstructural characteristics. Spectrophotometry demonstrated similar levels of fibronectin adsorption on both surfaces (80%). The association indexes of osteoblastic cells in FN-treated samples were significantly higher than those in samples without FN. The radioactivity values associated with the same samples, expressed as counts per minute (cpm), suggested that FN incorporation is an important determinant of the in vitro cytocompatibility of the surfaces. Conclusion. The preparation of bioactive titanium surfaces via fluoride and FN retention proved to be a useful treatment to optimize and to accelerate the osseointegration process for dental implants.