About this Journal Submit a Manuscript Table of Contents
International Journal of Biomaterials
Volume 2012 (2012), Article ID 313781, 14 pages
http://dx.doi.org/10.1155/2012/313781
Research Article

A Preliminary Study on the Potential of Manuka Honey and Platelet-Rich Plasma in Wound Healing

1Physical Medicine and Rehabilitation Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA 23249, USA
2Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
3Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
4Department of Nursing, Old Dominion University, Norfolk, VA 23529, USA
5Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA 23298, USA

Received 28 June 2012; Accepted 30 October 2012

Academic Editor: Traian V. Chirila

Copyright © 2012 Scott A. Sell et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. G. Simpson, “Dermal templates and the wound-healing paradigm: the promise of tissue regeneration,” Expert Review of Medical Devices, vol. 3, no. 4, pp. 471–484, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Percival and K. Cutting, Microbiology of Wounds, CRC Press, Boca Raton, Fla, USA, 2010.
  3. D. K. Langemo, D. Hanson, J. Anderson, P. Thompson, and S. Hunter, “Use of honey for wound healing,” Advances in Skin & Wound Care, vol. 22, no. 3, pp. 113–118, 2009. View at Scopus
  4. K. Rossiter, A. J. Cooper, D. Voegeli, and B. A. Lwaleed, “Honey promotes angiogeneic activity in the rat aortic ring assay,” Journal of Wound Care, vol. 19, no. 10, pp. 440–446, 2010. View at Scopus
  5. P. E. Lusby, A. Coombes, and J. M. Wilkinson, “Honey: a potent agent for wound healing?” Journal of Wound, Ostomy, and Continence Nursing, vol. 29, no. 6, pp. 295–300, 2002. View at Scopus
  6. A. G. Leong, P. M. Herst, and J. L. Harper, “Indigenous New Zealand honeys exhibit multiple anti-inflammatory activities,” Innate Immunity, vol. 18, no. 3, pp. 459–466, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. A. J. Tonks, R. A. Cooper, K. P. Jones, S. Blair, J. Parton, and A. Tonks, “Honey stimulates inflammatory cytokine production from monocytes,” Cytokine, vol. 21, no. 5, pp. 242–247, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. A. J. Tonks, E. Dudley, N. G. Porter et al., “A 5.8-kDa component of manuka honey stimulates immune cells via TLR4,” Journal of Leukocyte Biology, vol. 82, no. 5, pp. 1147–1155, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Lay-flurrie, “Honey in wound care: effects, clinical application and patient benefit,” British Journal of Nursing, vol. 17, no. 11, pp. S30–S32, 2008. View at Scopus
  10. N. S. Al-Waili, K. Salom, and A. A. Al-Ghamdi, “Honey for wound healing, ulcers, and burns; data supporting its use in clinical practice,” TheScientificWorldJournal, vol. 11, pp. 766–787, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. G. T. Gethin, S. Cowman, and R. M. Conroy, “The impact of Manuka honey dressings on the surface pH of chronic wounds,” International Wound Journal, vol. 5, no. 2, pp. 185–194, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Mavric, S. Wittmann, G. Barth, and T. Henle, “Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honeys from New Zealand,” Molecular Nutrition and Food Research, vol. 52, no. 4, pp. 483–489, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. T. E. Foster, B. L. Puskas, B. R. Mandelbaum, M. B. Gerhardt, and S. A. Rodeo, “Platelet-rich plasma: from basic science to clinical applications,” American Journal of Sports Medicine, vol. 37, no. 11, pp. 2259–2272, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Anitua, M. Sánchez, G. Orive, and I. Andia, “Delivering growth factors for therapeutics,” Trends in Pharmacological Sciences, vol. 29, no. 1, pp. 37–41, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Alsousou, M. Thompson, P. Hulley, A. Noble, and K. Willett, “The biology of platelet-rich plasma and its application in trauma and orthopaedic surgery: a review of the literature,” Journal of Bone and Joint Surgery B, vol. 91, no. 8, pp. 987–996, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Creaney and B. Hamilton, “Growth factor delivery methods in the management of sports injuries: the state of play,” British Journal of Sports Medicine, vol. 42, no. 5, pp. 314–320, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. D. N. Lyras, K. Kazakos, D. Verettas et al., “The effect of platelet-rich plasma gel in the early phase of patellar tendon healing,” Archives of Orthopaedic and Trauma Surgery, vol. 129, no. 11, pp. 1577–1582, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. M. M. Murray, K. P. Spindler, E. Abreu et al., “Collagen-platelet rich plasma hydrogel enhances primary repair of the porcine anterior cruciate ligament,” Journal of Orthopaedic Research, vol. 25, no. 1, pp. 81–91, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Mishra and T. Pavelko, “Treatment of chronic elbow tendinosis with buffered platelet-rich plasma,” American Journal of Sports Medicine, vol. 34, no. 11, pp. 1774–1778, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Rožman and Z. Bolta, “Use of platelet growth factors in treating wounds and soft-tissue injuries,” Acta Dermatovenerologica Alpina, Pannonica et Adriatica, vol. 16, no. 4, pp. 156–165, 2007. View at Scopus
  21. E. Anitua, J. J. Aguirre, J. Algorta et al., “Effectiveness of autologous preparation rich in growth factors for the treatment of chronic cutaneous ulcers,” Journal of Biomedical Materials Research B, vol. 84, no. 2, pp. 415–421, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Scevola, G. Nicoletti, F. Brenta, P. Isernia, M. Maestri, and A. Faga, “Allogenic platelet gel in the treatment of pressure sores: a pilot study,” International Wound Journal, vol. 7, no. 3, pp. 184–190, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Bernuzzi, S. Tardito, O. Bussolati et al., “Platelet gel in the treatment of cutaneous ulcers: the experience of the Immunohaematology and Transfusion Centre of Parma,” Blood Transfusion, vol. 8, no. 4, pp. 237–247, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Senet, F. X. Bon, M. Benbunan et al., “Randomized trial and local biological effect of autologous platelets used as adjuvant therapy for chronic venous leg ulcers,” Journal of Vascular Surgery, vol. 38, no. 6, pp. 1342–1348, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. T. M. Chen, J. C. Tsai, and T. Burnouf, “A novel technique combining platelet gel, skin graft, and fibrin glue for healing recalcitrant lower extremity ulcers,” Dermatologic Surgery, vol. 36, no. 4, pp. 453–460, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. H. El-Sharkawy, A. Kantarci, J. Deady et al., “Platelet-rich plasma: growth factors and pro- and anti-inflammatory properties,” Journal of Periodontology, vol. 78, no. 4, pp. 661–669, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. P. A. M. Everts, J. T. A. Knape, G. Weibrich et al., “Platelet-rich plasma and platelet gel: a review,” Journal of Extra-Corporeal Technology, vol. 38, no. 2, pp. 174–187, 2006. View at Scopus
  28. M. Sánchez, E. Anitua, G. Orive, I. Mujika, and I. Andia, “Platelet-rich therapies in the treatment of orthopaedic sport injuries,” Sports Medicine, vol. 39, no. 5, pp. 345–354, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. S. K. Brancato and J. E. Albina, “Wound macrophages as key regulators of repair: origin, phenotype, and function,” American Journal of Pathology, vol. 178, no. 1, pp. 19–25, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. B. M. Delavary, W. M. van der Veer, M. van Egmond, F. B. Niessen, and R. H. J. Beelen, “Macrophages in skin injury and repair,” Immunobiology, vol. 216, no. 7, pp. 753–762, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. S. J. Galli, N. Borregaard, and T. A. Wynn, “Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils,” Nature Immunology, vol. 12, no. 11, pp. 1035–1044, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. D. M. Mosser and J. P. Edwards, “Exploring the full spectrum of macrophage activation,” Nature Reviews Immunology, vol. 8, no. 12, pp. 958–969, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. E. Anitua, M. Sánchez, and G. Orive, “Potential of endogenous regenerative technology for in situ regenerative medicine,” Advanced Drug Delivery Reviews, vol. 62, no. 7-8, pp. 741–752, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Kocaoemer, S. Kern, H. Klüter, and K. Bieback, “Human AB serum and thrombin-activated platelet-rich plasma are suitable alternatives to fetal calf serum for the expansion of mesenchymal stem cells from adipose tissue,” Stem Cells, vol. 25, no. 5, pp. 1270–1278, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. S. C. Bir, J. Esaki, A. Marui et al., “Angiogenic properties of sustained release platelet-rich plasma: characterization in-vitro and in the ischemic hind limb of the mouse,” Journal of Vascular Surgery, vol. 50, no. 4, pp. 870–e2, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. G. Pietramaggiori, A. Kaipainen, J. M. Czeczuga, C. T. Wagner, and D. P. Orgill, “Freeze-dried platelet-rich plasma shows beneficial healing properties in chronic wounds,” Wound Repair and Regeneration, vol. 14, no. 5, pp. 573–580, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. G. Pietramaggiori, A. Kaipainen, D. Ho et al., “Trehalose lyophilized platelets for wound healing,” Wound Repair and Regeneration, vol. 15, no. 2, pp. 213–220, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Pietramaggiori, S. S. Scherer, J. C. Mathews et al., “Healing modulation induced by freeze-dried platelet-rich plasma and micronized allogenic dermis in a diabetic wound model,” Wound Repair and Regeneration, vol. 16, no. 2, pp. 218–225, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Sum, S. Hager, G. Pietramaggiori et al., “Wound-healing properties of trehalose-stabilized freeze-dried outdated platelets,” Transfusion, vol. 47, no. 4, pp. 672–679, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. H. H. Lu, J. M. Vo, H. S. Chin et al., “Controlled delivery of platelet-rich plasma-derived growth factors for bone formation,” Journal of Biomedical Materials Research A, vol. 86, no. 4, pp. 1128–1136, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. P. S. Wolfe, S. A. Sell, J. J. Ericksen, D. G. Simpson, and G. L. Bowlin, “The creation of electrospun nanofibers from platelet-rich plasma,” Journal of Tissue Science & Engineering, vol. 2, no. 2, 2011.
  42. S. A. Sell, P. S. Wolfe, J. J. Ericksen, D. G. Simpson, and G. L. Bowlin, “Incorporating platelet-rich plasma into electrospun scaffolds for tissue engineering applications,” Tissue Engineering A, vol. 17, no. 21-22, pp. 2723–2737, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. L. G. Rodriguez, X. Wu, and J. L. Guan, “Wound-healing assay,” Methods in Molecular Biology, vol. 294, pp. 23–29, 2005. View at Scopus
  44. J. M. G. T. Jenner, F. Van Eijk, D. B. F. Saris, W. J. Willems, W. J. A. Dhert, and L. B. Creemers, “Effect of transforming growth factor-beta and growth differentiation factor-5 on proliferation and matrix production by human bone marrow stromal cells cultured on braided poly lactic-co-glycolic acid scaffolds for ligament tissue engineering,” Tissue Engineering, vol. 13, no. 7, pp. 1573–1582, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. G. K. Reddy and C. S. Enwemeka, “A simplified method for the analysis of hydroxyproline in biological tissues,” Clinical Biochemistry, vol. 29, no. 3, pp. 225–229, 1996. View at Publisher · View at Google Scholar · View at Scopus
  46. F. Van Eijk, D. B. F. Saris, J. Riesle et al., “Tissue engineering of ligaments: a comparison of bone marrow stromal cells, anterior cruciate ligament, and skin fibroblasts as cell source,” Tissue Engineering, vol. 10, no. 5-6, pp. 893–903, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. Z. Chen, A. Htay, W. D. Santos et al., “In vitro angiogenesis by human umbilical vein endothelial cells (HUVEC) induced by three-dimensional co-culture with glioblastoma cells,” Journal of Neuro-Oncology, vol. 92, no. 2, pp. 121–128, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Mishra, P. Tummala, A. King et al., “Buffered platelet-rich plasma enhances mesenchymal stem cell proliferation and chondrogenic differentiation,” Tissue Engineering C, vol. 15, no. 3, pp. 431–435, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. E. Anitua, M. Sánchez, M. M. Zalduendo et al., “Fibroblastic response to treatment with different preparations rich in growth factors,” Cell Proliferation, vol. 42, no. 2, pp. 162–170, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. L. C. Visser, S. P. Arnoczky, O. Caballero, A. Kern, A. Ratcliffe, and K. L. Gardner, “Growth factor-rich plasma increases tendon cell proliferation and matrix synthesis on a synthetic scaffold: an in vitro study,” Tissue Engineering A, vol. 16, no. 3, pp. 1021–1029, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. K. Schallmoser, C. Bartmann, E. Rohde et al., “Human platelet lysate can replace fetal bovine serum for clinical-scale expansion of functional mesenchymal stromal cells,” Transfusion, vol. 47, no. 8, pp. 1436–1446, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. C. Doucet, I. Ernou, Y. Zhang et al., “Platelet lysates promote mesenchymal stem cell expansion: a safety substitute for animal serum in cell-based therapy applications,” Journal of Cellular Physiology, vol. 205, no. 2, pp. 228–236, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. E. Lucarelli, A. Beccheroni, D. Donati et al., “Platelet-derived growth factors enhance proliferation of human stromal stem cells,” Biomaterials, vol. 24, no. 18, pp. 3095–3100, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Cheng, H. Wang, R. Yoshida, and M. M. Murray, “Platelets and plasma proteins are both required to stimulate collagen gene expression by anterior cruciate ligament cells in three-dimensional culture,” Tissue Engineering A, vol. 16, no. 5, pp. 1479–1489, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. N. Kakudo, T. Minakata, T. Mitsui, S. Kushida, F. Z. Notodihardjo, and K. Kusumoto, “Proliferation-promoting effect of platelet-rich plasma on human adipose-derived stem cells and human dermal fibroblasts,” Plastic and Reconstructive Surgery, vol. 122, no. 5, pp. 1352–1360, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. J. P. Vogel, K. Szalay, F. Geiger, M. Kramer, W. Richter, and P. Kasten, “Platelet-rich plasma improves expansion of human mesenchymal stem cells and retains differentiation capacity and in vivo bone formation in calcium phosphate ceramics,” Platelets, vol. 17, no. 7, pp. 462–469, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. B. Biglari, P. H. Vd Linden, A. Simon, S. Aytac, H. J. Gerner, and A. Moghaddam, “Use of Medihoney as a non-surgical therapy for chronic pressure ulcers in patients with spinal cord injury,” Spinal Cord, vol. 50, no. 2, pp. 165–169, 2012. View at Publisher · View at Google Scholar · View at Scopus
  58. Z. Xia and J. T. Triffitt, “A review on macrophage responses to biomaterials,” Biomedical Materials, vol. 1, no. 1, pp. R1–R9, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. B. N. Brown, J. E. Valentin, A. M. Stewart-Akers, G. P. McCabe, and S. F. Badylak, “Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component,” Biomaterials, vol. 30, no. 8, pp. 1482–1491, 2009. View at Publisher · View at Google Scholar · View at Scopus