About this Journal Submit a Manuscript Table of Contents
International Journal of Biomaterials
Volume 2012 (2012), Article ID 432372, 4 pages
http://dx.doi.org/10.1155/2012/432372
Research Article

The Effect of Zirconia in Hydroxyapatite on Staphylococcus epidermidis Growth

1Department of Biomaterials, Faculty of Dentistry, Gadjah Mada University, Yogyakarta 55281, Indonesia
2Department of Biomedical Engineering, School of Graduate Studies, Gadjah Mada University, Yogyakarta 55281, Indonesia
3Department of Mechanical and Industrial Engineering, Faculty of Engineering, Gadjah Mada University, Yogyakarta 55281, Indonesia

Received 15 March 2012; Revised 28 May 2012; Accepted 13 June 2012

Academic Editor: Jukka Pekka Matinlinna

Copyright © 2012 Widowati Siswomihardjo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. A. Wahl and J. T. Czernuszka, “Collagen-hydroxyapatite composites for hard tissue repair,” European Cells and Materials, vol. 11, pp. 43–56, 2006. View at Scopus
  2. C. G. Finkemeier, “Bone-grafting and bone-graft substitutes,” Journal of Bone and Joint Surgery A, vol. 84, no. 3, pp. 454–464, 2002. View at Scopus
  3. Y. H. Hsu, I. G. Turner, and A. W. Miles, “Fabrication of porous bioceramics with porosity gradients similar to the bimodal structure of cortical and cancellous bone,” Journal of Materials Science, vol. 18, no. 12, pp. 2251–2256, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Bansal, V. Chauhan, S. Sharma, R. Maheshwari, A. Juyal, and S. Raghuvanshi, “Evaluation of hydroxyapatite and beta-tricalcium phosphate mixed with bone marrow aspirate as a bone graft substitute for posterolateral spinal fusion,” Indian Journal of Orthopaedics, vol. 43, no. 3, pp. 234–239, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Tint, H. Kondo, S. Kuroda et al., “Effectiveness of extracted teeth as bone substitute, application to parietal bone defects in rabbit,” Journal of Oral Tissue Engineering, vol. 3, no. 1, pp. 7–16, 2005.
  6. Q. Wang, S. Ge, and D. Zhang, “Highly bioactive nano-hydroxyapatite partially stabilized zirconia ceramics,” Journal of Bionics Engineering, vol. 1, no. 4, pp. 215–220, 2004.
  7. Y. Nayak, R. P. Rana, S. K. Pratihar, and S. Bhattacharyya, “Pressureless sintering of dense hydroxyapatite-zirconia composites,” Journal of Materials Science, vol. 19, no. 6, pp. 2437–2444, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. C. G. Simon, J. M. Antonucci, D. W. Liu, and D. Skrtic, “In vitro cytotoxicity of amorphous calcium phosphate composites,” Journal of Bioactive and Compatible Polymers, vol. 20, no. 3, pp. 279–295, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. M. K. Herliansyah, M. Hamdi, A. I. Ektessabi, and M. W. Wildan MW, “Fabrication of hydroxyapatite bone graft for implant applicationa literature study,” in Proceedings of the First International Conference on Manufacturing and Material Processing, pp. 559–564, Kuala Lumpur, Malaysia, 2006.
  10. W. Suchanek and M. Yoshimura, “Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants,” Journal of Materials Research, vol. 13, no. 1, pp. 94–117, 1998. View at Scopus
  11. E. E. Pujiyanto, A. E. Tontowi, M. W. Wildan, and W. Siswomihardjo, “Sintesis hidro-Hidroksiapatit dari gipsum Tasikmalaya sebagai bahan baku produk tulang buatan,” in Seminar on Aplication and Research in Industrial Technology, pp. 119–126, Jur Teknik Mesin dan Industri UGM, Yogyakarta, Indonesia, 2006.
  12. K. J. Anusavice, Phillip’s Science of Dental Materials, Elsevier, 11th edition, 2009.
  13. R. Quan, D. Yang, X. Wu, H. Wang, X. Miao, and W. Li, “In vitro and in vivo biocompatibility of graded hydroxyapatite-zirconia composite bioceramic,” Journal of Materials Science, vol. 19, no. 1, pp. 183–187, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Gottonboss, The development of antimicrobial biomaterial surface [thesis], Rijks University of Groningen, 2001.
  15. H. Katsuki, S. Furuta, and S. Komarneni, “Microwave versus conventional-hydrothermal synthesis of hydroxyapatite crystals from gypsum,” Journal of the American Ceramic Society, vol. 82, no. 8, pp. 2257–2259, 1999. View at Scopus
  16. M. Katsikogianni and Y. F. Missirlis, “Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions,” European Cells and Materials, vol. 8, pp. 37–57, 2004. View at Scopus
  17. E. S. Ahn, N. J. Gleason, and J. Y. Ying, “The effect of zirconia reinforcing agents on the microstructure and mechanical properties of hydroxyapatite-based nanocomposites,” Journal of the American Ceramic Society, vol. 88, no. 12, pp. 3374–3379, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. K. D. Landgrebe, D. J. Hastings, T. P. Smith, G. D. Cuny, A. Sengupta, and C. D. Brandys, Limiting the presence of microorganisms using polymer-bound metal-containing compositions, 2010, http://www.freepatentsonline.com/6432396.html.