About this Journal Submit a Manuscript Table of Contents
International Journal of Biomaterials
Volume 2012 (2012), Article ID 865291, 10 pages
http://dx.doi.org/10.1155/2012/865291
Research Article

Osteodifferentiation of Human Preadipocytes Induced by Strontium Released from Hydrogels

Department of Internal Medicine, University of Florence, 50139 Florence, Italy

Received 29 April 2012; Accepted 21 June 2012

Academic Editor: Giovanni Vozzi

Copyright © 2012 Valeria Nardone et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Arvidson, B. M. Abdallah, L. A. Applegate et al., “Bone regeneration and stem cells,” Journal of Cellular and Molecular Medicine, vol. 15, no. 4, pp. 718–746, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Ciapetti, L. Ambrosio, L. Savarino et al., “Osteoblast growth and function in porous poly ε-caprolactone matrices for bone repair: a preliminary study,” Biomaterials, vol. 24, no. 21, pp. 3815–3824, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. A. S. P. Lin, T. H. Barrows, S. H. Cartmell, and R. E. Guldberg, “Microarchitectural and mechanical characterization of oriented porous polymer scaffolds,” Biomaterials, vol. 24, no. 3, pp. 481–489, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. U. Kneser, D. J. Schaefer, E. Polykandriotis, and R. E. Horch, “Tissue engineering of bone: the reconstructive surgeon's point of view,” Journal of Cellular and Molecular Medicine, vol. 10, no. 1, pp. 7–19, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. J. S. Temenoff and A. G. Mikos, “Injectable biodegradable materials for orthopedic tissue engineering,” Biomaterials, vol. 21, no. 23, pp. 2405–2412, 2000. View at Scopus
  6. M. Deng, R. James, C. T. Laurencin, and S. G. Kumbar, “Nanostructured polymeric scaffolds for orthopaedic regenerative engineering,” IEEE Transactions on Nanobioscience, vol. 11, no. 1, Article ID 6135509, pp. 3–14, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Langer and J. P. Vacanti, “Tissue engineering,” Science, vol. 260, no. 5110, pp. 920–926, 1993. View at Scopus
  8. S. Yang, K. F. Leong, Z. Du, and C. K. Chua, “The design of scaffolds for use in tissue engineering. Part I. Traditional factors,” Tissue Engineering, vol. 7, no. 6, pp. 679–689, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Weinand, I. Pomerantseva, C. M. Neville et al., “Hydrogel-β-TCP scaffolds and stem cells for tissue engineering bone,” Bone, vol. 38, no. 4, pp. 555–563, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Howard, L. D. Buttery, K. M. Shakesheff, and S. J. Roberts, “Tissue engineering: strategies, stem cells and scaffolds,” Journal of Anatomy, vol. 213, no. 1, pp. 66–72, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Weigel, G. Schinkel, and A. Lendlein, “Design and preparation of polymeric scaffolds for tissue engineering,” Expert Review of Medical Devices, vol. 3, no. 6, pp. 835–851, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. A. I. Caplan and V. M. Goldberg, “Principles of tissue engineered regeneration of skeletal tissues,” Clinical Orthopaedics and Related Research, no. 367, pp. S12–S16, 1999. View at Scopus
  13. L. A. Solchaga, V. M. Goldberg, and A. I. Caplan, “Cartilage regeneration using principles of tissue engineering,” Clinical Orthopaedics and Related Research, no. 391, pp. S161–S170, 2001. View at Scopus
  14. C. T. Laurencin, A. M. A. Ambrosio, M. D. Borden, and J. A. Cooper, “Tissue engineering: orthopedic applications,” Annual Review of Biomedical Engineering, no. 1, pp. 19–46, 1999. View at Scopus
  15. J. F. Mano, R. A. Sousa, L. F. Boesel, N. M. Neves, and R. L. Reis, “Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments,” Composites Science and Technology, vol. 64, no. 6, pp. 789–817, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Suchanek and M. Yoshimura, “Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants,” Journal of Materials Research, vol. 13, no. 1, pp. 94–117, 1998. View at Scopus
  17. H. Petite, K. Vandamme, L. Monfoulet, and D. Logeart-Avramoglou, “Strategies for improving the efficacy of bioengineered bone constructs: a perspective,” Osteoporosis International, vol. 22, no. 6, pp. 2017–2021, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Langer, “Tissue engineering,” Molecular Therapy, vol. 1, no. 1, pp. 12–15, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Deng, L. S. Nair, S. P. Nukavarapu et al., “In situ porous structures: a unique polymer erosion mechanism in biodegradable dipeptide-based polyphosphazene and polyester blends producing matrices for regenerative engineering,” Advanced Functional Materials, vol. 20, no. 17, pp. 2794–2806, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. E. L. Chaikof, H. Matthew, J. Kohn, A. G. Mikos, G. D. Prestwich, and C. M. Yip, “Biomaterials and scaffolds in reparative medicine,” Annals of the New York Academy of Sciences, vol. 961, pp. 96–105, 2002. View at Scopus
  21. A. J. Friedenstein, K. V. Petrakova, A. I. Kurolesova, and G. P. Frolova, “Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues,” Transplantation, vol. 6, no. 2, pp. 230–247, 1968. View at Scopus
  22. A. J. Friedenstein, I. I. Piatetzky-Shapiro, and K. V. Petrakova, “Osteogenesis in transplants of bone marrow cells,” Journal of Embryology and Experimental Morphology, vol. 16, no. 3, pp. 381–390, 1966. View at Scopus
  23. M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. P. A. Zuk, M. Zhu, P. Ashjian et al., “Human adipose tissue is a source of multipotent stem cells,” Molecular Biology of the Cell, vol. 13, no. 12, pp. 4279–4295, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. O. K. Lee, T. K. Kuo, W. M. Chen, K. D. Lee, S. L. Hsieh, and T. H. Chen, “Isolation of multipotent mesenchymal stem cells from umbilical cord blood,” Blood, vol. 103, no. 5, pp. 1669–1675, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. P. De Coppi, G. Bartsch, M. M. Siddiqui et al., “Isolation of amniotic stem cell lines with potential for therapy,” Nature Biotechnology, vol. 25, no. 1, pp. 100–106, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Gronthos, J. Brahim, W. Li et al., “Stem cell properties of human dental pulp stem cells,” Journal of Dental Research, vol. 81, no. 8, pp. 531–535, 2002. View at Scopus
  28. P. Seale, A. Asakura, and M. A. Rudnicki, “The potential of muscle stem cells,” Developmental Cell, vol. 1, no. 3, pp. 333–342, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Quarto, M. Mastrogiacomo, R. Cancedda et al., “Repair of large bone defects with the use of autologous bone marrow stromal cells,” New England Journal of Medicine, vol. 344, no. 5, pp. 385–386, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Reyes, A. Dudek, B. Jahagirdar, L. Koodie, P. H. Marker, and C. M. Verfaillie, “Origin of endothelial progenitors in human postnatal bone marrow,” Journal of Clinical Investigation, vol. 109, no. 3, pp. 337–346, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Makino, K. Fukuda, S. Miyoshi et al., “Cardiomyocytes can be generated from marrow stromal cells in vitro,” Journal of Clinical Investigation, vol. 103, no. 5, pp. 697–705, 1999. View at Scopus
  32. W. Deng, M. Obrocka, I. Fischer, and D. J. Prockop, “In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP,” Biochemical and Biophysical Research Communications, vol. 282, no. 1, pp. 148–152, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. R. E. Schwartz, M. Reyes, L. Koodie, et al., “Multipotential adult rogenitor cells from bone marrow differentiation into functional hepatocyte-like cells,” The Journal of Clinical Investigation, vol. 109, pp. 1291–1302, 2002.
  34. J. F. Connolly, “Injectable bone marrow preparations to stimulate osteogenic repair,” Clinical Orthopaedics and Related Research, no. 313, pp. 8–18, 1995. View at Scopus
  35. J. J. Tiedeman, J. F. Connolly, B. S. Strates, and L. Lippiello, “Treatment of nonunion by percutaneous injection of bone marrow and demineralized bone matrix: an experimental study in dogs,” Clinical Orthopaedics and Related Research, no. 268, pp. 294–302, 1991. View at Scopus
  36. Y. Zhao, H. Lin, J. Zhang et al., “Crosslinked three-dimensional demineralized bone matrix for the adipose-derived stromal cell proliferation and differentiation,” Tissue Engineering A, vol. 15, no. 1, pp. 13–21, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. L. Hong, A. Colpan, I. A. Peptan, J. Daw, A. George, and C. A. Evans, “17-β estradiol enhances osteogenic and adipogenic differentiation of human adipose-derived stromal cells,” Tissue Engineering, vol. 13, no. 6, pp. 1197–1203, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. I. Tognarini, S. Sorace, R. Zonefrati et al., “In vitro differentiation of human mesenchymal stem cells on Ti6Al4V surfaces,” Biomaterials, vol. 29, no. 7, pp. 809–824, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. J. L. Drury and D. J. Mooney, “Hydrogels for tissue engineering: scaffold design variables and applications,” Biomaterials, vol. 24, no. 24, pp. 4337–4351, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. A. S. Hoffman, “Hydrogels for biomedical applications,” Annals of the New York Academy of Sciences, vol. 944, pp. 62–73, 2001. View at Scopus
  41. D. Lickorish, J. A. M. Ramshaw, J. A. Werkmeister, V. Glattauer, and C. R. Howlett, “Collagen-hydroxyapatite composite prepared by biomimetic process,” Journal of Biomedical Materials Research A, vol. 68, no. 1, pp. 19–27, 2004. View at Scopus
  42. T. J. Webster, C. Ergun, R. H. Doremus, R. W. Siegel, and R. Bizios, “Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics,” Journal of Biomedical Materials Research, vol. 51, no. 3, pp. 475–483, 2000. View at Publisher · View at Google Scholar · View at Scopus
  43. T. J. Webster, R. W. Siegel, and R. Bizios, “Osteoblast adhesion on nanophase ceramics,” Biomaterials, vol. 20, no. 13, pp. 1221–1227, 1999. View at Publisher · View at Google Scholar · View at Scopus
  44. J. A. Burdick and K. S. Anseth, “Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering,” Biomaterials, vol. 23, no. 22, pp. 4315–4323, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. C. G. Williams, T. K. Kim, A. Taboas, A. Malik, P. Manson, and J. Elisseeff, “In vitro chondrogenesis of bone marrow-derived mesenchymal stem cells in a photopolymerizing hydrogel,” Tissue Engineering, vol. 9, no. 4, pp. 679–688, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. A. M. Carossino, R. Recenti, R. Carossino et al., “Methodological models for in vitro amplification and maintenance of human articular chondrocytes from elderly patients,” Biogerontology, vol. 8, no. 5, pp. 483–498, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. S. J. Bryant and K. S. Anseth, “Controlling the spatial distribution of ECM components in degradable PEG hydrogels for tissue engineering cartilage,” Journal of Biomedical Materials Research A, vol. 64, no. 1, pp. 70–79, 2003. View at Scopus
  48. G. Leone, M. Fini, P. Torricelli, R. Giardino, and R. Barbucci, “An amidated carboxymethylcellulose hydrogel for cartilage regeneration,” Journal of Materials Science, vol. 19, no. 8, pp. 2873–2880, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Ulrich-Vinther, M. D. Maloney, E. M. Schwarz, R. Rosier, and R. J. O'Keefe, “Articular cartilage biology,” The Journal of the American Academy of Orthopaedic Surgeons, vol. 11, no. 6, pp. 421–430, 2003. View at Scopus
  50. Z. Hamidouche, O. Fromigué, J. Ringe et al., “Priming integrin α5 promotes human mesenchymal stromal cell osteoblast differentiation and osteogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 44, pp. 18587–18591, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. H. W. Kim, J. C. Knowles, and H. E. Kim, “Hydroxyapatite/poly(ε-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery,” Biomaterials, vol. 25, no. 7-8, pp. 1279–1287, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. L. Di Silvio and W. Bonfield, “Biodegradable drug delivery system for the treatment of bone infection and repair,” Journal of Materials Science, vol. 10, no. 10-11, pp. 653–658, 1999. View at Scopus
  53. H. Shin, S. Jo, and A. G. Mikos, “Biomimetic materials for tissue engineering,” Biomaterials, vol. 24, no. 24, pp. 4353–4364, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. C. Csaki, P. R. A. Schneider, and M. Shakibaei, “Mesenchymal stem cells as a potential pool for cartilage tissue engineering,” Annals of Anatomy, vol. 190, no. 5, pp. 395–412, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. T. Garg, O. Singh, S. Arora, and R. S. R. Murthy, “Scaffold: a novel carrier for cell and drug delivery,” Critical Reviews in Therapeutic Drug Carrier Systems, vol. 29, no. 1, pp. 1–63, 2012. View at Scopus
  56. P. J. Meunier, C. Roux, E. Seeman et al., “The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis,” New England Journal of Medicine, vol. 350, no. 5, pp. 459–468, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. J. Y. Reginster, E. Seeman, M. C. De Vernejoul et al., “Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: Treatment of Peripheral Osteoporosis (TROPOS) study,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 5, pp. 2816–2822, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. P. J. Marie, “Strontium ranelate: a novel mode of action optimizing bone formation and resorption,” Osteoporosis International, vol. 16, no. 1, pp. S7–S10, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. P. J. Marie, “Strontium ranelate: a dual mode of action rebalancing bone turnover in favour of bone formation,” Current Opinion in Rheumatology, vol. 18, no. 1, pp. S11–S15, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. E. Bonnelye, A. Chabadel, F. Saltel, and P. Jurdic, “Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro,” Bone, vol. 42, no. 1, pp. 129–138, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. P. J. Marie, D. Felsenberg, and M. L. Brandi, “How strontium ranelate, via opposite effects on bone resorption and formation, prevents Osteoporosis,” Osteoporosis International, vol. 22, no. 6, pp. 1659–1667, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. K. Qiu, X. J. Zhao, C. X. Wan, C. S. Zhao, and Y. W. Chen, “Effect of strontium ions on the growth of ROS17/2.8 cells on porous calcium polyphosphate scaffolds,” Biomaterials, vol. 27, no. 8, pp. 1277–1286, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. W. Song, Q. Wang, C. Wan et al., “A novel alkali metals/strontium co-substituted calcium polyphosphate scaffolds in bone tissue engineering,” Journal of Biomedical Materials Research B, vol. 98, no. 2, pp. 255–262, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. F. Liu, X. Zhang, X. Yu, Y. Xu, T. Feng, and D. Ren, “In vitro study in stimulating the secretion of angiogenic growth factors of strontium-doped calcium polyphosphate for bone tissue engineering,” Journal of Materials Science, vol. 22, no. 3, pp. 683–692, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. R. Barbucci, G. Leone, M. Monici, D. Pantalone, M. Fini, and R. Giardino, “The effect of amidic moieties on polysaccharides: evaluation of the physicochemical and biological properties of amidic carboxymethylcellulose (CMCA) in the form of linear polymer and hydrogel,” Journal of Materials Chemistry, vol. 15, no. 22, pp. 2234–2241, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. D. Beauchemin, “Inductively coupled plasma mass spectrometry,” Analytical Chemistry, vol. 78, no. 12, pp. 4111–4135, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. J. A. Hubbell, “Bioactive biomaterials,” Current Opinion in Biotechnology, vol. 10, no. 2, pp. 123–129, 1999. View at Publisher · View at Google Scholar · View at Scopus
  68. K. E. Healy, “Molecular engineering of materials for bioreactivity,” Current Opinion in Solid State and Materials Science, vol. 4, no. 4, pp. 381–387, 1999. View at Scopus
  69. S. E. Sakiyama-Elbert and J. A. Hubbell, “Functional biomaterials: design of novel biomaterials,” Annual Review of Materials Science, vol. 31, pp. 183–201, 2001. View at Publisher · View at Google Scholar · View at Scopus
  70. M. J. Humphries, S. K. Akiyama, and A. Komoriya, “Identification of an alternatively spliced site in human plasma fibronectin that mediates cell type-specific adhesion,” Journal of Cell Biology, vol. 103, no. 6, pp. 2637–2647, 1986. View at Scopus
  71. T. Garg, O. Singh, S. Arora, and R. S. R. Murthy, “Scaffold: a novel carrier for cell and drug delivery,” Critical Reviews in Therapeutic Drug Carrier Systems, vol. 29, no. 1, pp. 1–63, 2012. View at Scopus
  72. J. A. Rowley, G. Madlambayan, and D. J. Mooney, “Alginate hydrogels as synthetic extracellular matrix materials,” Biomaterials, vol. 20, no. 1, pp. 45–53, 1999. View at Publisher · View at Google Scholar · View at Scopus
  73. M. P. Lutolf, F. E. Weber, H. G. Schmoekel et al., “Repair of bone defects using synthetic mimetics of collagenous extracellular matrices,” Nature Biotechnology, vol. 21, no. 5, pp. 513–518, 2003. View at Publisher · View at Google Scholar · View at Scopus
  74. S. C. Verberckmoes, G. J. Behets, L. Oste et al., “Effects of strontium on the physicochemical characteristics of hydroxyapatite,” Calcified Tissue International, vol. 75, no. 5, pp. 405–415, 2004. View at Publisher · View at Google Scholar · View at Scopus
  75. M. P. Lutolf and J. A. Hubbell, “Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering,” Nature Biotechnology, vol. 23, no. 1, pp. 47–55, 2005. View at Publisher · View at Google Scholar · View at Scopus