About this Journal Submit a Manuscript Table of Contents
International Journal of Biomaterials
Volume 2013 (2013), Article ID 146320, 9 pages
http://dx.doi.org/10.1155/2013/146320
Research Article

Development of Chitosan Nanoparticles as a Stable Drug Delivery System for Protein/siRNA

Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia

Received 2 May 2013; Revised 29 August 2013; Accepted 29 August 2013

Academic Editor: Traian V. Chirila

Copyright © 2013 Haliza Katas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Bowman and K. W. Leong, “Chitosan nanoparticles for oral drug and gene delivery,” International journal of nanomedicine, vol. 1, no. 2, pp. 117–128, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Terbojevich, A. Cosani, and R. A. A. Muzzarelli, “Molecular parameters of chitosans depolymerized with the aid of papain,” Carbohydrate Polymers, vol. 29, no. 1, pp. 63–68, 1996. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Devalapally, A. Chakilam, and M. M. Amiji, “Role of nanotechnology in pharmaceutical product development,” Journal of Pharmaceutical Sciences, vol. 96, no. 10, pp. 2547–2565, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Singh and J. W. Lillard, “Nanoparticle-based targeted drug delivery,” Experimental and Molecular Pathology, vol. 86, no. 3, pp. 215–223, 2009. View at Publisher · View at Google Scholar
  5. S. C. W. Richardson, H. V. J. Kolbe, and R. Duncan, “Potential of low molecular mass chitosan as a DNA delivery system: biocompatibility, body distribution and ability to complex and protect DNA,” International Journal of Pharmaceutics, vol. 178, no. 2, pp. 231–243, 1999. View at Publisher · View at Google Scholar
  6. Z. H. Liu, Y. P. Jia, Y. F. Wang, C. R. Zhou, and Z. Y. Zhang, “Polysaccharides-based nanoparticles as drug delivery systems,” Advanced Drug Delivery Reviews, vol. 60, no. 15, pp. 1650–1662, 2008. View at Publisher · View at Google Scholar
  7. V. Dodane and V. D. Vilivalam, “Pharmaceutical applications of chitosan,” Pharmaceutical Science and Technology Today, vol. 1, no. 6, pp. 246–253, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Kurita, “Chitin and chitosan: functional biopolymers from marine crustaceans,” Journal of Marine Biotechnology, vol. 8, no. 3, pp. 203–226, 2005. View at Publisher · View at Google Scholar
  9. F. Chellat, A. Grandjean-Laquerriere, R. Le Naour et al., “Metalloproteinase and cytokine production by THP-1 macrophages following exposure to chitosan-DNA nanoparticles,” Biomaterials, vol. 26, no. 9, pp. 961–970, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. J. L. Zhang, J. N. Liu, L. Li, and W. H. Xia, “Dietary chitosan improves hypercholesterolemia in rats fed high-fat diets,” Nutrition Research, vol. 28, no. 6, pp. 383–390, 2008. View at Publisher · View at Google Scholar
  11. K. V. Harish Prashanth and R. N. Tharanathan, “Chitin/chitosan: modifications and their unlimited application potential—an overview,” Trends in Food Science and Technology, vol. 18, no. 3, pp. 117–131, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Berthold, K. Cremer, and J. Kreuter, “Preparation,” Journal of Controlled Release, vol. 39, no. 1, pp. 17–25, 1996. View at Publisher · View at Google Scholar · View at Scopus
  13. W. Tiyaboonchai, J. Woiszwillo, R. C. Sims, and C. R. Middaugh, “Insulin containing polyethylenimine-dextran sulfate nanoparticles,” International Journal of Pharmaceutics, vol. 255, no. 1-2, pp. 139–151, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. K. A. Janes, P. Calvo, and M. J. Alonso, “Polysaccharide colloidal particles as delivery systems for macromolecules,” Advanced Drug Delivery Reviews, vol. 47, no. 1, pp. 83–97, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Delair, “Colloidal polyelectrolyte complexes of chitosan and dextran sulfate towards versatile nanocarriers of bioactive molecules,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 78, no. 1, pp. 10–18, 2011. View at Publisher · View at Google Scholar
  16. T. López-León, E. L. S. Carvalho, B. Seijo, J. L. Ortega-Vinuesa, and D. Bastos-González, “Physicochemical characterization of chitosan nanoparticles: electrokinetic and stability behavior,” Journal of Colloid and Interface Science, vol. 283, no. 2, pp. 344–351, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Calvo, C. Remunan, J. J. L. Vila, and M. J. Alonso, “Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines,” Pharmaceutical Research, vol. 14, no. 10, pp. 1431–1436, 1997. View at Publisher · View at Google Scholar
  18. J. Qi, P. Yaoa, P. Heb, C. Yub, and C. Huang, “Nanoparticles with dextran/chitosan shell and BSA/chitosan core—doxorubicin loading and delivery,” International Journal of Pharmaceutics, vol. 393, no. 1-2, pp. 177–185, 2010. View at Publisher · View at Google Scholar
  19. Q. Gan and T. Wang, “Chitosan nanoparticle as protein delivery carrier—systematic examination of fabrication conditions for efficient loading and release,” Colloids and Surfaces B, vol. 59, no. 1, pp. 24–34, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Chen, V. J. Mohanraj, and J. E. Parkin, “Chitosan-dextran sulfate nanoparticles for delivery of an anti-angiogenesis peptide,” Letters in Peptide Science, vol. 10, no. 5-6, pp. 621–629, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Chen, V. J. Mohanraj, F. Wang, and H. A. E. Benson, “Designing chitosan-dextran sulfate nanoparticles using charge ratios,” AAPS PharmSciTech, vol. 8, no. 4, pp. 131–139, 2007. View at Scopus
  22. H. Katas and H. O. Alpar, “Development and characterisation of chitosan nanoparticles for siRNA delivery,” Journal of Controlled Release, vol. 115, no. 2, pp. 216–225, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. S. M. Moghimi, “Mechanisms of splenic clearance of blood cells and particles: towards development of new splenotropic agents,” Advanced Drug Delivery Reviews, vol. 17, no. 1, pp. 103–115, 1995. View at Publisher · View at Google Scholar
  24. G. Storm, S. O. Belliot, T. Daemen, and D. D. Lasic, “Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system,” Advanced Drug Delivery Reviews, vol. 17, no. 1, pp. 31–48, 1995. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Hirano, T. Kawanami, and J. F. Llena, “Electron microscopy of the blood-brain barrier in disease,” Microscopy Research and Technique, vol. 27, no. 6, pp. 543–556, 1994. View at Scopus
  26. S. K. Hobbs, W. L. Monsky, F. Yuan et al., “Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 8, pp. 4607–4612, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Gao, J. Chen, L. Dong, Z. Ding, Y. Yang, and J. Zhang, “Targeting delivery of oligonucleotide and plasmid DNA to hepatocyte via galactosylated chitosan vector,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 60, no. 3, pp. 327–334, 2005. View at Publisher · View at Google Scholar
  28. X. G. Zhang, D. Y. Teng, Z. M. Wu et al., “PEG-grafted chitosan nanoparticles as an injectable carrier for sustained protein release,” Journal of Materials Science: Materials in Medicine, vol. 19, no. 12, pp. 3525–3533, 2008. View at Publisher · View at Google Scholar
  29. X. G. Zhang, H. J. Zhang, Z. M. Wu, Z. Wang, H. M. Niu, and C. X. Li, “Nasal absorption enhancement of insulin using PEG-grafted chitosan nanoparticles,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 68, no. 3, pp. 526–534, 2008. View at Publisher · View at Google Scholar