About this Journal Submit a Manuscript Table of Contents
International Journal of Biomaterials
Volume 2013 (2013), Article ID 527957, 9 pages
http://dx.doi.org/10.1155/2013/527957
Research Article

Cellular Response to a Novel Fetal Acellular Collagen Matrix: Implications for Tissue Regeneration

Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305-5148, USA

Received 18 April 2013; Revised 25 June 2013; Accepted 25 June 2013

Academic Editor: Traian V. Chirila

Copyright © 2013 Robert C. Rennert et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. G. Cornwell, A. Landsman, and K. S. James, “Extracellular matrix biomaterials for soft tissue repair,” Clinics in Podiatric Medicine and Surgery, vol. 26, no. 4, pp. 507–523, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. P. D. Cole, D. Stal, S. E. Sharabi, J. Hicks, and L. H. Hollier Jr., “A comparative, long-term assessment of four soft tissue substitutes,” Aesthetic Surgery Journal, vol. 31, no. 6, pp. 674–681, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. J. E. Valentin, J. S. Badylak, G. P. McCabe, and S. F. Badylak, “Extracellular matrix bioscaffolds for orthopaedic applications: a comparative histologic study,” Journal of Bone and Joint Surgery Series A, vol. 88, no. 12, pp. 2673–2686, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. P. K. Mays, J. E. Bishop, and G. J. Laurent, “Age-related changes in the proportion of types I and III collagen,” Mechanisms of Ageing and Development, vol. 45, no. 3, pp. 203–212, 1988. View at Scopus
  5. J. A. Ramshaw, “Distribution of type III collagen in bovine skin of various ages,” Connective Tissue Research, vol. 14, no. 4, pp. 307–314, 1986. View at Scopus
  6. PriMatrix-Dermal Repair Scaffold, 2012, http://www.teibio.com/PriMatrix.aspx.
  7. E. Lullove, “Acellular fetal bovine dermal matrix in the treatment of nonhealing wounds in patients with complex comorbidities,” Journal of the American Podiatric Medical Association, vol. 102, no. 3, pp. 233–239, 2012.
  8. S. J. Kavros, “Acellular fetal bovine dermal matrix for treatment of chronic ulcerations of the midfoot associated with charcot neuroarthropathy,” Foot & Ankle Specialist, vol. 5, no. 4, pp. 230–234, 2012.
  9. J. C. Karr, “Retrospective comparison of diabetic foot ulcer and venous stasis ulcer healing outcome between a dermal repair scaffold (PriMatrix) and a bilayered living cell therapy (Apligraf),” Advances in Skin & Wound Care, vol. 24, no. 3, pp. 119–125, 2011. View at Scopus
  10. C. R. Deeken, L. Melman, E. D. Jenkins, S. C. Greco, M. M. Frisella, and B. D. Matthews, “Histologic and biomechanical evaluation of crosslinked and non-crosslinked biologic meshes in a porcine model of ventral incisional hernia repair,” Journal of the American College of Surgeons, vol. 212, no. 5, pp. 880–888, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. N. J. Smart, M. Marshall, and I. R. Daniels, “Biological meshes: a review of their use in abdominal wall hernia repairs,” Surgeon, vol. 10, no. 3, pp. 159–171, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. C. R. Kinsella Jr., L. J. Grunwaldt, G. M. Cooper, M. C. Mills, and J. E. Losee, “Scalp reconstruction: regeneration with acellular dermal matrix,” Journal of Craniofacial Surgery, vol. 21, no. 2, pp. 605–607, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. A. P. Kontos, Z. Qian, N. S. Urato, A. Hassanein, and S. A. Proper, “AlloDerm grafting for large wounds after mohs micrographic surgery,” Dermatologic Surgery, vol. 35, no. 4, pp. 692–698, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Reyzelman, R. T. Crews, J. C. Moore et al., “Clinical effectiveness of an acellular dermal regenerative tissue matrix compared to standard wound management in healing diabetic foot ulcers: a prospective, randomised, multicentre study,” International Wound Journal, vol. 6, no. 3, pp. 196–208, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. U. K. Sinha, C. Shih, K. Chang, and D. H. Rice, “Use of AlloDerm for coverage of radial forearm free flap donor site,” Laryngoscope, vol. 112, no. 2, pp. 230–234, 2002. View at Scopus
  16. D. M. Wise, “Histologic proof that acellular dermal matrices (ADM)—Enduragen, DermaMatrix, and DuraMatrix—are not repopulated or nonviable and that AlloDerm may be repopulated but degraded synchronously,” Aesthetic Surgery Journal, vol. 32, no. 3, pp. 355–358, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Pan, Z. Liang, S. Yuan, J. Xu, J. Wang, and S. Chen, “A long-term follow-up study of acellular dermal matrix with thin autograft in burns patients,” Annals of Plastic Surgery, vol. 67, no. 4, pp. 346–351, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. O. M. Tepper, J. M. Capla, R. D. Galiano et al., “Adult vasculogenesis occurs through in situ recruitment, proliferation, and tubulization of circulating bone marrow-derived cells,” Blood, vol. 105, no. 3, pp. 1068–1077, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Hamou, M. J. Callaghan, H. Thangarajah, et al., “Mesenchymal stem cells can participate in ischemic neovascularization,” Plastic and Reconstructive Surgery, vol. 123, no. 2 Suppl, pp. 45S–55S, 2009.
  20. Y. Chen, L.-X. Xiang, J.-Z. Shao et al., “Recruitment of endogenous bone marrow mesenchymal stem cells towards injured liver,” Journal of Cellular and Molecular Medicine, vol. 14, no. 6 B, pp. 1494–1508, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. G. C. Gurtner, V. W. Wong, M. Sorkin, J. P. Glotzbach, and M. T. Longaker, “Surgical approaches to create murine models of human wound healing,” Journal of Biomedicine and Biotechnology, vol. 2011, Article ID 969618, 8 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus