About this Journal Submit a Manuscript Table of Contents
International Journal of Biomaterials
Volume 2013 (2013), Article ID 752821, 10 pages
http://dx.doi.org/10.1155/2013/752821
Research Article

Isolation and Screening of Polyhydroxyalkanoates Producing Bacteria from Pulp, Paper, and Cardboard Industry Wastes

1Department of Microbiology, Kurukshetra University, Kurukshetra, Haryana 136119, India
2Department of Biotechnology, Kurukshetra University, Kurukshetra 136119, India

Received 26 May 2013; Revised 8 August 2013; Accepted 20 August 2013

Academic Editor: Ravin Narain

Copyright © 2013 Anish Kumari Bhuwal et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Byrom, “Polymer synthesis by microorganisms: technology and economics,” Trends in Biotechnology, vol. 5, no. 9, pp. 246–250, 1987. View at Scopus
  2. S. Y. Lee and H. N. Chang, “Production of poly(3-hydroxybutyric acid) by recombinant Escherichia coli strains: genetic and fermentation studies,” Canadian Journal of Microbiology, vol. 41, no. 1, pp. 207–215, 1995. View at Scopus
  3. B. Hazer and A. Steinbüchel, “Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications,” Applied Microbiology and Biotechnology, vol. 74, no. 1, pp. 1–12, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. X. Gao, J. Chen, Q. Wu, and G. Chen, “Polyhydroxyalkanoates as a source of chemicals, polymers, and biofuels,” Current Opinion in Biotechnology, vol. 22, no. 6, pp. 768–774, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Rudnik, “Definitions, structures and methods of preparation,” in Compostable Polymer Materials, pp. 10–36, Elsevier, Amsterdam, The Netherlands, 1st edition, 2008.
  6. J. Choi and S. Y. Lee, “Process analysis and economic evaluation for poly(3-hydroxybutyrate) production by fermentation,” Bioprocess Engineering, vol. 17, no. 6, pp. 335–342, 1997. View at Publisher · View at Google Scholar · View at Scopus
  7. I. M. Tamer, M. Moo-Young, and Y. Chisti, “Optimization of poly(β-hydroxybutyric acid) recovery from Alcaligenes latus: combined mechanical and chemical treatments,” Bioprocess Engineering, vol. 19, no. 6, pp. 459–468, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Grothe, M. Moo-Young, and Y. Chisti, “Fermentation optimization for the production of poly(β-hydroxybutyric acid) microbial thermoplastic,” Enzyme and Microbial Technology, vol. 25, no. 1-2, pp. 132–141, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Yamane, “Cultivation engineering of microbial bioplastics production,” FEMS Microbiology Reviews, vol. 103, no. 2–4, pp. 257–264, 1992. View at Scopus
  10. T. Yamane, “Yield of poly-D(−)-3-hydroxybutyrate from various carbon sources: a theoretical study,” Biotechnology and Bioengineering, vol. 41, no. 1, pp. 165–170, 1993. View at Publisher · View at Google Scholar · View at Scopus
  11. P. M. Halami, “Production of polyhydroxyalkanoate from starch by the native isolate Bacillus cereus CFR06,” World Journal of Microbiology and Biotechnology, vol. 24, no. 6, pp. 805–812, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. L. R. Castilho, D. A. Mitchell, and D. M. G. Freire, “Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation,” Bioresource Technology, vol. 100, no. 23, pp. 5996–6009, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. M. L. Juan, L. W. Gonzalez, and G. C. Walker, “A novel screening method for isolating exopolysaccharide-deficient mutants,” Applied and Environmental Microbiology, vol. 64, no. 11, pp. 4600–4602, 1998. View at Scopus
  14. P. Spiekermann, B. H. A. Rehm, R. Kalscheuer, D. Baumeister, and A. Steinbüchel, “A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds,” Archives of Microbiology, vol. 171, no. 2, pp. 73–80, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Singh, A. Mittal, A. Kumari, V. Goel, N. K. Aggarwal, and A. Yadav, “Optimization of poly-B-hydroxybutyrate production from Bacillus species,” European Journal of Biological Sciences, vol. 3, no. 4, pp. 112–116, 2011.
  16. J. Law and R. A. Slepecky, “Assay of poly-beta-hydroxybutyric acid,” Journal of Bacteriology, vol. 82, pp. 52–55, 1961. View at Scopus
  17. I. Y. Lee, H. N. Chang, and Y. H. Park, “A simple method for recovery of microbial poly-3-hydroxybutyrate by alkaline solution treatment,” Journal of Microbiology and Biotechnology, vol. 5, no. 4, pp. 238–240, 1995.
  18. G. Du, J. Chen, J. Yu, and S. Lun, “Continuous production of poly-3-hydroxybutyrate by Ralstonia eutropha in a two-stage culture system,” Journal of Biotechnology, vol. 88, no. 1, pp. 59–65, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. M. R. Zakaria, H. J. Ariffin, N. A. M. Aziz, S. A. Nishida, H. Y. Shirai, and M. A. Hassan, “Biosynthesis and characterization of poly(3-hydroxybutyrate-co-3- hydroxyvalerate) copolymer from wild-type Comamonas sp. EB172,” Polymer Degradation and Stability, vol. 95, no. 8, pp. 1382–1386, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Steinbüchel, “Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoats biosynethesis pathways as a successful example,” Macromolecular Bioscience, vol. 1, pp. 1–24, 2001.
  21. M. Zinn, B. Witholt, and T. Egli, “Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate,” Advanced Drug Delivery Reviews, vol. 53, no. 1, pp. 5–21, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Teeka, T. Imai, X. Cheng et al., “Screening of PHA producing bacteria using biodiesel-derived waste glycerol as a sole carbon source,” Journal of Water and Environment Technology, vol. 8, pp. 371–381, 2010.
  23. H. Ramachandran and A. A. Abdullah, “Isolation of PHA-producing bacteria from Malaysian environment,” in Proceedings of the 7th IMT-GT UNINET and the 3rd International PSU-UNS Conferences on Bioscience, pp. 178–179, 2010.
  24. S. Kitamura and Y. Doi, “Staining method of poly(3-hydroxyalkanoic acids) producing bacteria by nile blue,” Biotechnology Techniques, vol. 8, no. 5, pp. 345–350, 1994. View at Scopus
  25. K. Cho, H. W. Ryu, C. Park, and P. R. Goodrich, “Poly(hydroxybutyrate-co-hydroxyvalerate) from swine waste liquor by Azotobacter vinelandii UWD,” Biotechnology Letters, vol. 19, no. 1, pp. 7–10, 1997. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Yu, “Production of PHA from starchy wastewater via organic acids,” Journal of Biotechnology, vol. 86, no. 2, pp. 105–112, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Salehizadeh and M. C. M. van Loosdrecht, “Production of polyhydroxyalkanoates by mixed culture: recent trends and biotechnological importance,” Biotechnology Advances, vol. 22, no. 3, pp. 261–279, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. J. M. L. Dias, P. C. Lemos, L. S. Serafim et al., “Recent advances in polyhydroxyalkanoate production by mixed aerobic cultures: from the substrate to the final product,” Macromolecular Bioscience, vol. 6, no. 11, pp. 885–906, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Ceyhan and G. Ozdemir, “Poly-β-hydroxybutyrate (PHB) production from domestic wastewater using Enterobacter aerogenes 12Bi strain,” African Journal of Microbiology Research, vol. 5, no. 6, pp. 690–702, 2011. View at Scopus
  30. K. J. Ganzeveld, A. Van Hagen, M. H. Van Agteren, W. De Koning, and A. J. M. S. Uiterkamp, “Upgrading of organic waste: production of the copolymer poly-3-hydroxybutyrate-co-valerate by Ralstonia eutrophus withorganic waste as sole carbon source,” Journal of Cleaner Production, vol. 7, no. 6, pp. 413–420, 1999. View at Scopus
  31. M. N. Rao and A. K. Datta, Waste Water Treatment, pp. 203–208, Oxford and IBH Publishing, New Delhi, India, 2007.
  32. G. H. John, N. R. Krieg, S. Peter, H. A. Staley, T. W. Satnley, and T. James, Bergey’s Manual of Determinative Bacteriology, Williams and Wilkins, Philadelphia, Pa, USA, 9th edition, 2009.
  33. M. F. da Silva, I. Tiago, A. Veríssimo, R. A. Boaventura, O. C. Nunes, and C. M. Manaia, “Antibiotic resistance of Enterococci and related bacteria in an urban wastewater treatment plant,” FEMS Microbiology Ecology, vol. 55, no. 2, pp. 322–329, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. S. C. Jiang, W. Chu, B. H. Olson et al., “Microbial source tracking in a small southern California urban watershed indicates wild animals and growth as the source of fecal bacteria,” Applied Microbiology and Biotechnology, vol. 76, no. 4, pp. 927–934, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. M. V. Reddy and S. V. Mohan, “Effect of substrate load and nutrients concentration on the polyhydroxyalkanoates (PHA) production using mixed consortia through wastewater treatment,” Bioresource Technology, vol. 114, pp. 573–582, 2011. View at Scopus
  36. A. Rani, S. Porwal, R. Sharma, A. Kapley, H. J. Purohit, and V. C. Kalia, “Assessment of microbial diversity in effluent treatment plants by culture dependent and culture independent approaches,” Bioresource Technology, vol. 99, no. 15, pp. 7098–7107, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. S. H. Ryu, M. Park, J. R. Lee, P. Yun, and C. O. Jeon, “Brevundimonas aveniformis sp. nov., a stalked species isolated from activated sludge,” International Journal of Systematic and Evolutionary Microbiology, vol. 57, no. 7, pp. 1561–1565, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Ruggeri, A. Franzetti, G. Bestetti et al., “Isolation and characterisation of surface active compound-producing bacteria from hydrocarbon-contaminated environments,” International Biodeterioration and Biodegradation, vol. 63, no. 7, pp. 936–942, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. G. Tsiamis, G. Tzagkaraki, A. Chamalaki et al., “Olive-mill wastewater bacterial communities display a cultivar specific profile,” Current Microbiology, vol. 64, no. 2, pp. 197–203, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. J. A. Silva, L. M. Tobella, J. Becerra, F. Godoy, and M. A. Martínez, “Biosynthesis of poly-β-hydroxyalkanoate by Brevundimonas vesicularis LMG P-23615 and Sphingopyxis macrogoltabida LMG 17324 using acid-hydrolyzed sawdust as carbon source,” Journal of Bioscience and Bioengineering, vol. 103, no. 6, pp. 542–546, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. V. Tanamool, T. Imai, P. Danvirutai, and P. Kaewkannetra, “Biosynthesis of polyhydroxyalkanoate (PHA) by Hydrogenophaga sp. Isolated from soil environment during batch fermentation,” Journal of Life Sciences, vol. 5, no. 12, pp. 1003–1012, 2011.
  42. A. Yezza, A. Halasz, W. Levadoux, and J. Hawari, “Production of poly-β-hydroxybutyrate (PHB) by Alcaligenes latus from maple sap,” Applied Microbiology and Biotechnology, vol. 77, no. 2, pp. 269–274, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. W. M. Pachekoski, J. A. M. Agnelli, and L. P. Belem, “Thermal, mechanical and morphological properties of poly (hydroxybutyrate) and polypropylene blends after processing,” Materials Research, vol. 12, no. 2, pp. 159–164, 2009. View at Scopus