About this Journal Submit a Manuscript Table of Contents
International Journal of Corrosion
Volume 2012 (2012), Article ID 573964, 6 pages
http://dx.doi.org/10.1155/2012/573964
Research Article

Study of a Triazole Derivative as Corrosion Inhibitor for Mild Steel in Phosphoric Acid Solution

School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, China

Received 14 July 2011; Accepted 16 November 2011

Academic Editor: Omar S. Es-Said

Copyright © 2012 Lin Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Trabanelli, “Inhibitors—an old remedy for a new challenge,” Corrosion, vol. 47, no. 6, pp. 410–419, 1991.
  2. S. E. Nataraja, T. V. Venkatesha, K. Manjunatha, B. Poojary, M. K. Pavithra, and H. C. Tandon, “Inhibition of the corrosion of steel in hydrochloric acid solution by some organic molecules containing the methylthiophenyl moiety,” Corrosion Science, vol. 53, no. 8, pp. 2651–2659, 2011. View at Publisher · View at Google Scholar
  3. X. Li, S. Deng, and H. Fu, “Inhibition by tetradecylpyridinium bromide of the corrosion of aluminium in hydrochloric acid solution,” Corrosion Science, vol. 53, no. 4, pp. 1529–1536, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. N. Caliskan and E. Akbas, “The inhibition effect of some pyrimidine derivatives on austenitic stainless steel in acidic media,” Materials Chemistry and Physics, vol. 126, no. 3, pp. 983–988, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Z. A. Rafiquee, N. Saxena, S. Khan, and M. A. Quraishi, “Influence of surfactants on the corrosion inhibition behaviour of 2-aminophenyl-5-mercapto-1-oxa-3,4-diazole (AMOD) on mild steel,” Materials Chemistry and Physics, vol. 107, no. 2-3, pp. 528–533, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Fiaud, A. Harch, D. Mallouh, and M. Tzinmann, “The inhibition of iron corrosion by acetylenic alcohols in acid solutions at high temperature,” Corrosion Science, vol. 35, no. 5-8, pp. 1437–1444, 1993. View at Scopus
  7. B. Mernari, H. ELAttari, M. Traisnel, F. Bentiss, and M. Lagrenee, “3,5-Bis(n-pyridyl)-4-amino-1,2,4-triazoles on the corrosion for mild steel in 1M HCl medium,” Corrosion Science, vol. 40, pp. 391–399, 1998.
  8. W. Qafsaoui and H. Takenouti, “Corrosion protection of 2024-T3 aluminium alloy by electro-polymerized 3-amino 1,2,4-triazole in sulphate solution containing chloride,” Corrosion Science, vol. 52, no. 11, pp. 3667–3676, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Finšgar and I. Milošev, “Inhibition of copper corrosion by 1,2,3-benzotriazole: a review,” Corrosion Science, vol. 52, no. 9, pp. 2737–2749, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. M. L. Zheludkevich, K. A. Yasakau, S. K. Poznyak, and M. G. S. Ferreira, “Triazole and thiazole derivatives as corrosion inhibitors for AA2024 aluminium alloy,” Corrosion Science, vol. 47, no. 12, pp. 3368–3383, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Bentiss, M. Traisnel, L. Gengembre, and M. Lagrenée, “Inhibition of acidic corrosion of mild steel by 3,5-diphenyl-4H-1,2,4-triazole,” Applied Surface Science, vol. 161, no. 1, pp. 194–202, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Gopi, K. M. Govindaraju, V. Collins Arun Prakash, D. M. Angeline Sakila, and L. Kavitha, “A study on new benzotriazole derivatives as inhibitors on copper corrosion in ground water,” Corrosion Science, vol. 51, no. 10, pp. 2259–2265, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Wang, “Inhibition of mild steel corrosion in phosphoric acid solution by triazole derivatives,” Corrosion Science, vol. 48, no. 3, pp. 608–616, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. M. A. Quraishi and D. Jamal, “Corrosion inhibition of N-80 steel and mild steel in 15% boiling hydrochloric acid by a triazole compound—SAHMT,” Materials Chemistry and Physics, vol. 68, no. 1–3, pp. 283–287, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Zhang, Z. Tao, S. Liao, and F. Wu, “Substitutional adsorption isotherms and corrosion inhibitive properties of some oxadiazol-triazole derivative in acidic solution,” Corrosion Science, vol. 52, no. 9, pp. 3126–3132, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. A. S. Fouda and A. S. Ellithy, “Inhibition effect of 4-phenylthiazole derivatives on corrosion of 304L stainless steel in HCl solution,” Corrosion Science, vol. 51, no. 4, pp. 868–875, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. H. L. Wang, R. B. Liu, and J. Xin, “Inhibiting effects of some mercapto-triazole derivatives on the corrosion of mild steel in 1.0 M HC1 medium,” Corrosion Science, vol. 46, no. 10, pp. 2455–2466, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Bentiss, M. Lagrenee, M. Traisnel, and J. C. Hornez, “The corrosion inhibition of mild steel in acidic media by a new triazole derivative,” Corrosion Science, vol. 41, no. 4, pp. 789–803, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Wang, G. Y. Yin, Q. F. Zhang, and J. X. Pu, “Corrosion inhibition of low-carbon steel in phosphoric acid solution by 2-mercaptobeneoxazole,” Corrosion Science, vol. 56, pp. 1083–1085, 2000.
  20. Y. Jianguo, W. Lin, V. Otieno-Alego, and D. P. Schweinsberg, “Polyvinylpyrrolidone and polyethylenimine as inhibitors for the corrosion of a low carbon steel in phosphoric acid,” Corrosion Science, vol. 37, no. 6, pp. 975–985, 1995.
  21. Z. Y. Zhang, M. Li, and N. Zhao, “Synthesis of 3-alkyl/aryl-6-(3’pyridyl)-s-triazole[3,4-b]-1,3,4-thiadiazoles,” Organic Chemistry, vol. 13, no. 4, pp. 397–402, 1993.
  22. G. N. Mu, T. P. Zhao, M. Liu, and T. Gu, “Effect of metallic cations on corrosion inhibition of an anionic surfactant for mild steel,” Corrosion, vol. 52, no. 11, pp. 853–856, 1996. View at Scopus
  23. L. Yang, X. Li, and G. Mu, “Synergistic effect between 4-(2-pyridylazo) resorcin and chloride ion on the corrosion of cold rolled steel in 1.0 M phosphoric acid,” Applied Surface Science, vol. 253, no. 5, pp. 2367–2372, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. I. Sekine and Y. Hirakawa, “Effect of 1-hydroxyethylidene-1, 1-diphosphonic acid on the corrosion of SS 41 steel in 0.3% sodium chloride solution,” Corrosion, vol. 42, no. 5, pp. 272–277, 1986. View at Scopus
  25. E. Cano, J. L. Polo, A. L. A. Iglesia, and J. M. Bastidas, “A study on the adsorption of benzotriazole on copper in hydrochloric acid using the inflection point of the isotherm,” Adsorption, vol. 10, no. 3, pp. 219–225, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. M. H. Wahdan, A. A. Hermas, and M. S. Morad, “Corrosion inhibition of carbon-steels by propargyltriphenylphosphonium bromide in H,” Materials Chemistry and Physics, vol. 76, no. 2, pp. 111–118, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. K. F. Khaled, “Molecular simulation, quantum chemical calculations and electrochemical studies for inhibition of mild steel by triazoles,” Electrochimica Acta, vol. 53, no. 9, pp. 3484–3492, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. F. Bentiss, M. Lebrini, and M. Lagrenée, “Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in mild steel/2,5-bis(n-thienyl)-1,3,4-thiadiazoles/ hydrochloric acid system,” Corrosion Science, vol. 47, no. 12, pp. 2915–2931, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. P. B. Mathur and T. Vasudevan, “Reaction rate studies for the corrosion of metal in acids-I, iron in mineral acids,” Corrosion, vol. 38, pp. 171–178, 1982.
  30. B. F. Conway, Electrochemical Data, Elsevier, New York, NY, USA, 1952.
  31. R. R. Annand, R. M. Hurd, and N. Hackerman, “Adsorption of monomeric and polymeric amino corrosion inhibitiors on steel,” Journal of The Electrochemical Society, vol. 112, pp. 138–144, 1965.
  32. L. Wang, “Evaluation of 2-mercaptobenzimidazole as corrosion inhibitor for mild steel in phosphoric acid,” Corrosion Science, vol. 43, no. 12, pp. 2281–2289, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Wang, J. X. Pu, and H. C. Luo, “Corrosion inhibition of zinc in phosphoric acid solution by 2-mercaptobenzimidazole,” Corrosion Science, vol. 45, no. 4, pp. 677–683, 2003. View at Publisher · View at Google Scholar
  34. S. Muralidharan, M. A. Quraishi, and S. V. K. Iyer, “The effect of molecular structure on hydrogen permeation and the corrosion inhibition of mild steel in acidic solutions,” Corrosion Science, vol. 37, no. 11, pp. 1739–1750, 1995. View at Scopus
  35. B. Bonnelly, T. C. Dowine, R. Grzekowiak, H. R. Hamburg, and D. Short, “The effect of electronic delocalization in organic groups R in substituted thiocarbamoryl R-CS-NH2 and related compoynds on inhibition efficiency,” Corrosion Science, vol. 18, pp. 109–116, 1978.