About this Journal Submit a Manuscript Table of Contents
International Journal of Cell Biology
Volume 2011 (2011), Article ID 390238, 9 pages
http://dx.doi.org/10.1155/2011/390238
Research Article

Doxorubicin Induced Nephrotoxicity: Protective Effect of Nicotinamide

1Suleymaniye Woman Health Hospital, 34122 Istanbul, Turkey
2Department of Histology and Embryology, Cerrahpasa School of Medicine, Istanbul University, 34452 Istanbul, Turkey
3Department of Medical Biology, Cerrahpasa School of Medicine, Istanbul University, 34452 Istanbul, Turkey
4Department of Pharmacology, Meram School of Medicine, Selcuk University, 42080 Konya, Turkey
5Department of Histology and Embryology, Ege University School of Medicine, 35100 Izmir, Turkey

Received 31 January 2011; Revised 25 April 2011; Accepted 16 May 2011

Academic Editor: Richard Gomer

Copyright © 2011 Sule Ayla et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. K. Singal, C. M. R. Deally, and L. E. Weinberg, “Subcellular effects of adriamycin in the heart: a concise review,” Journal of Molecular and Cellular Cardiology, vol. 19, no. 8, pp. 817–828, 1987. View at Scopus
  2. E. Fadillioğlu, H. Erdoğan, S. Söğüt, and I. Kuku, “Protective effects of erdosteine against doxorubicin-induced cardiomyopathy in rats,” Journal of Applied Toxicology, vol. 23, no. 1, pp. 71–74, 2003. View at Publisher · View at Google Scholar · View at PubMed
  3. A. Karaman, E. Fadillioglu, E. Turkmen, E. Tas, and Z. Yilmaz, “Protective effects of leflunomide against ischemia-reperfusion injury of the rat liver,” Pediatric Surgery International, vol. 22, no. 5, pp. 428–434, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. L. L. Liu, Q. X. Li, L. Xia, J. Li, and L. Shao, “Differential effects of dihydropyridine calcium antagonists on doxorubicin-induced nephrotoxicity in rats,” Toxicology, vol. 231, no. 1, pp. 81–90, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. F. H. Wapstra, H. Van Goor, P. E. De Jong, G. Navis, and D. De Zeeuw, “Dose of doxorubicin determines severity of renal damage and responsiveness to ACE-inhibition in experimental nephrosis,” Journal of Pharmacological and Toxicological Methods, vol. 41, no. 2-3, pp. 69–73, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Nathan and Q. W. Xie, “Regulation of biosynthesis of nitric oxide,” Journal of Biological Chemistry, vol. 269, no. 19, pp. 13725–13728, 1994. View at Scopus
  7. R. Radi, J. S. Beckman, K. M. Bush, and B. A. Freeman, “Peroxynitrite oxidation of sulfhydryls: the cytotoxic potential of superoxide and nitric oxide,” Journal of Biological Chemistry, vol. 266, no. 7, pp. 4244–4250, 1991. View at Scopus
  8. J. C. Cendan, W. W. Souba, E. M. Copeland, and D. S. Lind, “Cytokines regulate endotoxin stimulation of endothelial cell arginine transport,” Surgery, vol. 117, no. 2, pp. 213–219, 1995. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Fukuzawa, J. Satoh, G. Muto et al., “Inhibitory effect of nicotinamide on in vitro and in vivo production of tumor necrosis factor-α,” Immunology Letters, vol. 59, no. 1, pp. 7–11, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Virág and C. Szabó, “The therapeutic potential of poly(ADP-ribose) polymerase inhibitors,” Pharmacological Reviews, vol. 54, no. 3, pp. 375–429, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. J. S. Ungerstedt, M. Blombäck, and T. Söderström, “Nicotinamide is a potent inhibitor of proinflammatory cytokines,” Clinical and Experimental Immunology, vol. 131, no. 1, pp. 48–52, 2003. View at Publisher · View at Google Scholar
  12. S. Cuzzocrea, D. P. Riley, A. P. Caputi, and D. Salvemini, “Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury,” Pharmacological Reviews, vol. 53, no. 1, pp. 135–159, 2001. View at Scopus
  13. M. Yagmurca, H. Erdogan, M. Iraz, A. Songur, M. Ucar, and E. Fadillioglu, “Caffeic acid phenethyl ester as a protective agent against doxorubicin nephrotoxicity in rats,” Clinica Chimica Acta, vol. 348, no. 1-2, pp. 27–34, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. E. Beutler, “Active transport of glutathione disulfide from erythrocytes,” in Functions of Glutathione: Biochemical, Physiological, Toxicological, and Clinical Aspects, A. Lorsen, Ed., p. 65, Raven Press, 1988.
  15. H. W. Sharma and R. Narayanan, “The NF-κB transcription factor in oncogenesis,” Anticancer Research, vol. 16, no. 2, pp. 589–596, 1996. View at Scopus
  16. D. E. Paglia and W. N. Valentine, “Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase,” The Journal of Laboratory and Clinical Medicine, vol. 70, no. 1, pp. 158–169, 1967. View at Scopus
  17. R. L. Levine, D. Garland, C. N. Oliver et al., “Determination of carbonyl content in oxidatively modified proteins,” Methods in Enzymology, vol. 186, pp. 464–478, 1990. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Raij, S. Azar, and W. Keane, “Mesangial immune injury, hypertension, and progressive glomerular damage in Dahl rats,” Kidney International, vol. 26, no. 2, pp. 137–143, 1984. View at Scopus
  19. S. Hertzan-Levy, R. Fish, E. Skutelsky et al., “Glomerular basement membrane anionic sites in Adriamycin nephropathy: effect of saline loading and nitric oxide modulation,” Nephron, vol. 84, no. 4, pp. 354–361, 2000. View at Scopus
  20. Y. Wang, Y. P. Wang, Y. C. Tay, and D. C. H. Harris, “Progressive adriamycin nephropathy in mice: sequence of histologic and immunohistochemical events,” Kidney International, vol. 58, no. 4, pp. 1797–1804, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. S. V. Shah, “Role of reactive oxygen metabolites in experimental glomerular disease,” Kidney International, vol. 35, no. 5, pp. 1093–1106, 1989. View at Scopus
  22. A. Deman, B. Ceyssens, M. Pauwels et al., “Altered antioxidant defence in a mouse adriamycin model of glomerulosclerosis,” Nephrology Dialysis Transplantation, vol. 16, no. 1, pp. 147–150, 2001. View at Scopus
  23. P. Deres, R. Halmosi, A. Toth et al., “Prevention of doxorubicin-induced acute cardiotoxicity by an experimental antioxidant compound,” Journal of Cardiovascular Pharmacology, vol. 45, no. 1, pp. 36–43, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. T. M. Bray and C. G. Taylor, “Tissue glutathione, nutrition, and oxidative stress,” Canadian Journal of Physiology and Pharmacology, vol. 71, no. 9, pp. 746–751, 1993. View at Scopus
  25. P. Montilla, I. Túnez, M. C. Muñoz, A. López, and J. V. Soria, “Hyperlipidemic nephropathy induced by adriamycin: effect of melatonin administration,” Nephron, vol. 76, no. 3, pp. 345–350, 1997.
  26. L. F. Fajardo, J. R. Eltringham, J. R. Stewart, and M. R. Klauber, “Adriamycin nephrotoxicity,” Laboratory Investigation, vol. 43, no. 3, pp. 242–253, 1980.
  27. S. S. Sternberg, F. S. Philips, and A. P. Cronin, “Renal tumors and other lesions in rats following a single intravenous injection of daunomycin,” Cancer Research, vol. 32, no. 5, pp. 1029–1036, 1972.
  28. M. K. Irmak, E. Fadillioglu, S. Sogut et al., “Effects of caffeic acid phenethyl ester and alpha-tocopherol on reperfusion injury in rat brain,” Cell Biochemistry and Function, vol. 21, no. 3, pp. 283–289, 2003. View at Publisher · View at Google Scholar · View at PubMed
  29. M. M. Sayed-Aimed, “Increased plasma endothelin-1 and cardiac nitric oxide during doxorubicin-induced cardiomyopathy,” Pharmacology and Toxicology, vol. 89, no. 3, pp. 140–144, 2001.
  30. P. Pacher, L. Liaudet, P. Bai et al., “Potent metalloporphyrin peroxynitrite decomposition catalyst protects against the development of doxorubicin-induced cardiac dysfunction,” Circulation, vol. 107, no. 6, pp. 896–904, 2003. View at Publisher · View at Google Scholar
  31. G. Tanrıverdi, The Analysis of the protective effects of nicotinamid's different doses on the liver damage induced carbon tetrachloride (CCl4) by light and electron microscopically, Research of dissertation, 2005.