About this Journal Submit a Manuscript Table of Contents
International Journal of Cell Biology
Volume 2012 (2012), Article ID 161837, 9 pages
http://dx.doi.org/10.1155/2012/161837
Review Article

TCA Cycle Defects and Cancer: When Metabolism Tunes Redox State

1Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy
2IRCCS San Raffaele Pisana, Via di Val Cannuta, 00166 Rome, Italy

Received 13 April 2012; Revised 1 June 2012; Accepted 15 June 2012

Academic Editor: Giuseppe Filomeni

Copyright © 2012 Simone Cardaci and Maria Rosa Ciriolo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Kroemer and J. Pouyssegur, “Tumor cell metabolism: Cancer's Achilles' heel,” Cancer Cell, vol. 13, no. 6, pp. 472–482, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. O. Warburg, “On the origin of cancer cells,” Science, vol. 123, no. 3191, pp. 309–314, 1956. View at Scopus
  3. I. E. Scheffler, Mitochondria, John Wiley & Sons, 2nd edition, 2008.
  4. D. R. Wise, P. S. Ward, J. E. Shay, et al., “Hypoxia promotes isocytrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability,” Proceedings of the National Academy of Sciences USA, vol. 108, no. 49, 19611 pages, 1961.
  5. C. M. Metallo, P. A. Gameiro, E. L. Bell, et al., “Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia,” Nature, vol. 481, no. 7381, pp. 380–384, 2011.
  6. A. R. Mullen, W. W. Wheaton, E. S. Jin, et al., “Reductive carboxylation supports growth in tumour cells with defective mitochondria,” Nature, vol. 481, no. 7381, pp. 385–388, 2011.
  7. D. C. Wallace, W. Fan, and V. Procaccio, “Mitochondrial energetics and therapeutics,” Annual Review of Pathology, vol. 5, pp. 297–348, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Bardella, P. J. Pollard, and I. Tomlinson, “SDH mutations in cancer,” Biochimica et Biophysica Acta, vol. 1807, no. 11, pp. 1432–1443, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. B. E. Baysal, R. E. Ferrell, J. E. Willett-Brozick et al., “Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma,” Science, vol. 287, no. 5454, pp. 848–851, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Niemann and U. Müller, “Mutations in SDHC cause autosomal dominant paraganglioma, type 3,” Nature Genetics, vol. 26, no. 3, pp. 268–270, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Astuti, F. Latif, A. Dallol et al., “Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma,” American Journal of Human Genetics, vol. 69, no. 1, pp. 49–54, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. B. E. Baysal, J. E. Willett-Brozick, E. C. Lawrence et al., “Prevalence of SDHB, SDHC, and SDHD germline mutations in clinic patients with head and neck paragangliomas,” Journal of Medical Genetics, vol. 39, no. 3, pp. 178–183, 2002. View at Scopus
  13. H. X. Hao, O. Khalimonchuk, M. Schraders et al., “SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma,” Science, vol. 325, no. 5944, pp. 1139–1142, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. J. P. Bayley, H. P. M. Kunst, A. Cascon et al., “SDHAF2 mutations in familial and sporadic paraganglioma and phaeochromocytoma,” The Lancet Oncology, vol. 11, no. 4, pp. 366–372, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Burnichon, J. J. Brière, R. Libé et al., “SDHA is a tumor suppressor gene causing paraganglioma,” Human Molecular Genetics, vol. 19, no. 15, pp. 3011–3020, 2010. View at Scopus
  16. E. Gottlieb and I. P. M. Tomlinson, “Mitochondrial tumour suppressors: a genetic and biochemical update,” Nature Reviews Cancer, vol. 5, no. 11, pp. 857–866, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. A. B. Zinn, D. S. Kerr, and C. L. Hoppel, “Fumarase deficiency: a new cause of mitochondrial encephalomyopathy,” The New England Journal of Medicine, vol. 315, no. 8, pp. 469–475, 1986. View at Scopus
  18. V. Launonen, O. Vierimaa, M. Kiuru et al., “Inherited susceptibility to uterine leiomyomas and renal cell cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 6, pp. 3387–3392, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. I. P. M. Tomlinson, N. A. Alam, A. J. Rowan et al., “Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer the multiple leiomyoma consortium,” Nature Genetics, vol. 30, no. 4, pp. 406–410, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. L. G. Carvajal-Carmona, N. A. Alam, P. J. Pollard et al., “Adult leydig cell tumors of the testis caused by germline fumarate hydratase mutations,” The Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 8, pp. 3071–3075, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. H. J. Lehtonen, M. Kiuru, S. K. Ylisaukko-Oja et al., “Increased risk of cancer in patients with fumarate hydratase germline mutation,” Journal of Medical Genetics, vol. 43, no. 6, pp. 523–526, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. A. King, M. A. Selak, and E. Gottlieb, “Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer,” Oncogene, vol. 25, no. 34, pp. 4675–4682, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Dang, S. Jin, and S. M. Su, “IDH mutations in glioma and acute myeloid leukemia,” Trends in Molecular Medicine, vol. 16, no. 9, pp. 392–397, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. D. W. Parsons, S. Jones, X. Zhang et al., “An integrated genomic analysis of human glioblastoma multiforme,” Science, vol. 321, no. 5897, pp. 1807–1812, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Yan, D. W. Parsons, G. Jin et al., “IDH1 and IDH2 mutations in gliomas,” The New England Journal of Medicine, vol. 360, no. 8, pp. 765–773, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. R. A. Cairns, J. Iqbal, F. Lemonnier, et al., “IDH2 mutations are frequent in angioimmunoblastic T-cell lymphoma,” Blood, vol. 119, no. 8, pp. 1901–1903, 2012.
  27. S. Abbas, S. Lugthart, F. G. Kavelaars et al., “Acquired mutations in the genes encoding IDH1 and IDH2 both are recurrent aberrations in acute myeloid leukemia: prevalence and prognostic value,” Blood, vol. 116, no. 12, pp. 2122–2126, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Paschka, R. F. Schlenk, V. I. Gaidzik et al., “IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication,” Journal of Clinical Oncology, vol. 28, no. 22, pp. 3636–3643, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. M. R. Kang, M. S. Kim, J. E. Oh et al., “Mutational analysis of IDH1 codon 132 in glioblastomas and other common cancers,” International Journal of Cancer, vol. 125, no. 2, pp. 353–355, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. K. E. Yen, M. A. Bittinger, S. M. Su, and V. R. Fantin, “Cancer-associated IDH mutations: biomarker and therapeutic opportunities,” Oncogene, vol. 29, no. 49, pp. 6409–6417, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Dang, D. W. White, S. Gross et al., “Cancer-associated IDH1 mutations produce 2-hydroxyglutarate,” Nature, vol. 462, no. 7274, pp. 739–744, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. P. S. Ward, J. Patel, D. R. Wise et al., “The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting α-ketoglutarate to 2-hydroxyglutarate,” Cancer Cell, vol. 17, no. 3, pp. 225–234, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. A. P. Gimenez-Roqueplo, J. Favier, P. Rustin et al., “The R22X mutation of the SDHD gene in hereditary paraganglioma abolishes the enzymatic activity of complex II in the mitochondrial respiratory chain and activates the hypoxia pathway,” American Journal of Human Genetics, vol. 69, no. 6, pp. 1186–1197, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. P. L. M. Dahia, K. N. Ross, M. E. Wright et al., “A HIf1α regulatory loop links hypoxia and mitochondrial signals in pheochromocytomas,” PLoS Genetics, vol. 1, no. 1, pp. 72–80, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Vanharanta, P. J. Pollard, H. J. Lehtonen et al., “Distinct expression profile in fumarate-hydratase-deficient uterine fibroids,” Human Molecular Genetics, vol. 15, no. 1, pp. 97–103, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. M. A. Selak, S. M. Armour, E. D. MacKenzie et al., “Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase,” Cancer Cell, vol. 7, no. 1, pp. 77–85, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Ozer and R. K. Bruick, “Non-heme dioxygenases: cellular sensors and regulators jelly rolled into one?” Nature Chemical Biology, vol. 3, no. 3, pp. 144–153, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. J. S. Isaacs, J. J. Yun, D. R. Mole et al., “HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability,” Cancer Cell, vol. 8, no. 2, pp. 143–153, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Adam, E. Hatipoglu, L. O'Flaherty, et al., “Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: roles for fumarate in KEAP1 succination and Nrf2 signaling,” Cancer Cell, vol. 20, no. 4, pp. 524–537, 2011.
  40. P. Koivunen, S. Lee, C. G. Duncan, C. G. Kaelin Jr., et al., “Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation,” Nature, vol. 483, pp. 484–488, 2012.
  41. S. Lee, E. Nakamura, H. Yang et al., “Neuronal apoptosis linked to EglN3 prolyl hydroxylase and familial pheochromocytoma genes: developmental culling and cancer,” Cancer Cell, vol. 8, no. 2, pp. 155–167, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Schlisio, R. S. Kenchappa, L. C. W. Vredeveld et al., “The kinesin KIF1Bβ acts downstream from EglN3 to induce apoptosis and is a potential 1p36 tumor suppressor,” Genes and Development, vol. 22, no. 7, pp. 884–893, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. P. Chi, C. D. Allis, and G. G. Wang, “Covalent histone modifications-miswritten, misinterpreted and mis-erased in human cancers,” Nature Reviews Cancer, vol. 10, no. 7, pp. 457–469, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. E. Caffarelli and P. Filetici, “Epigenetic regulation in cancer development,” Frontiers in Bioscience, vol. 1, no. 17, pp. 2682–2694, 2011. View at Publisher · View at Google Scholar
  45. H. Hou and H. Yu, “Structural insights into histone lysine demethylation,” Current Opinion in Structural Biology, vol. 20, no. 6, pp. 739–748, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. A. M. Cervera, J. P. Bayley, P. Devilee, and K. J. McCreath, “Inhibition of succinate dehydrogenase dysregulates histone modification in mammalian cells,” Molecular Cancer, vol. 8, article 89, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. E. H. Smith, R. Janknecht, and J. L. Maher III, “Succinate inhibition of α-ketoglutarate-dependent enzymes in a yeast model of paraganglioma,” Human Molecular Genetics, vol. 16, no. 24, pp. 3136–3148, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. R. Chowdhury, K. K. Yeoh, Y. M. Tian et al., “The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases,” EMBO Reports, vol. 12, no. 5, pp. 463–469, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. M. E. Figueroa, O. Abdel-Wahab, C. Lu et al., “Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation,” Cancer Cell, vol. 18, no. 6, pp. 553–567, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. J. Füllgrabe, E. Kavanagh, and B. Joseph, “Histone onco-modifications,” Oncogene, vol. 30, no. 31, pp. 3391–3403, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. P. Sarkies and J. E. Sale, “Cellular epigenetic stability and cancer,” Trends in Genetics, vol. 28, no. 3, pp. 118–127, 2012.
  52. T. P. Szatrowski and C. F. Nathan, “Production of large amounts of hydrogen peroxide by human tumor cells,” Cancer Research, vol. 51, no. 3, pp. 794–798, 1991. View at Scopus
  53. S. Toyokuni, “Persistent oxidative stress in cancer,” FEBS Letters, vol. 358, no. 1, pp. 1–3, 1995. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Kawanishi, Y. Hiraku, S. Pinlaor, and N. Ma, “Oxidative and nitrative DNA damage in animals and patients with inflammatory diseases in relation to inflammation-related carcinogenesis,” Biological Chemistry, vol. 387, no. 4, pp. 365–372, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. N. Ishii, M. Fujii, P. S. Hartman et al., “A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes,” Nature, vol. 394, no. 6694, pp. 694–697, 1998. View at Publisher · View at Google Scholar · View at Scopus
  56. N. Senoo-Matsuda, K. Yasuda, M. Tsuda et al., “A defect in the cytochrome b large subunit in complex II causes both superoxide anion overproduction and abnormal energy metabolism in caenorhabditis elegans,” The Journal of Biological Chemistry, vol. 276, no. 45, pp. 41553–41558, 2001. View at Publisher · View at Google Scholar · View at Scopus
  57. T. Ishii, K. Yasuda, A. Akatsuka, O. Hino, P. S. Hartman, and N. Ishii, “A mutation in the SDHC gene of complex II increases oxidative stress, resulting in apoptosis and tumorigenesis,” Cancer Research, vol. 65, no. 1, pp. 203–209, 2005. View at Scopus
  58. R. D. Guzy, B. Sharma, E. Bell, N. S. Chandel, and P. T. Schumacker, “Loss of the SdhB, but not the SdhA, subunit of complex II triggers reactive oxygen species-dependent hypoxia-inducible factor activation and tumorigenesis,” Molecular and Cellular Biology, vol. 28, no. 2, pp. 718–731, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. N. S. Chandel, E. Maltepe, E. Goldwasser, C. E. Mathieu, M. C. Simon, and P. T. Schumacker, “Mitochondrial reactive oxygen species trigger hypoxia-induced transcription,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 20, pp. 11715–11720, 1998. View at Publisher · View at Google Scholar · View at Scopus
  60. N. S. Chandel, D. S. McClintock, C. E. Feliciano et al., “Reactive oxygen species generated at mitochondrial Complex III stabilize hypoxia-inducible factor-1α during hypoxia: a mechanism of O2 sensing,” Journal of Biological Chemistry, vol. 275, no. 33, pp. 25130–25138, 2000. View at Publisher · View at Google Scholar · View at Scopus
  61. G. Filomeni, G. Rotilio, and M. R. Ciriolo, “Disulfide relays and phosphorylative cascades: partners in redox-mediated signaling pathways,” Cell Death and Differentiation, vol. 12, no. 12, pp. 1555–1563, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. Z. J. Reitman, G. Jin, E. D. Karoly et al., “Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 8, pp. 3270–3275, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. J. M. Matés, J. A. Segura, J. A. Campos-Sandoval et al., “Glutamine homeostasis and mitochondrial dynamics,” International Journal of Biochemistry and Cell Biology, vol. 41, no. 10, pp. 2051–2061, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. W. Hu, C. Zhang, R. Wu, Y. Sun, A. Levine, and Z. Feng, “Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 16, pp. 7455–7460, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. S. Zhao, Y. Lin, W. Xu et al., “Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1α,” Science, vol. 324, no. 5924, pp. 261–265, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. A. Latini, K. Scussiato, R. B. Rosa et al., “D-2-hydroxyglutaric acid induces oxidative stress in cerebral cortex of young rats,” European Journal of Neuroscience, vol. 17, no. 10, pp. 2017–2022, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. S. Kölker, V. Pawlak, B. Ahlemeyer et al., “NMDA receptor activation and respiratory chain complex V inhibition contribute to neurodegeneration in D-2-hydroxyglutaric aciduria,” European Journal of Neuroscience, vol. 16, no. 1, pp. 21–28, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. S. Sudarshan, C. Sourbier, H. S. Kong et al., “Fumarate hydratase deficiency in renal cancer induces glycolytic addiction and hypoxia-inducible transcription factor 1α stabilization by glucose-dependent generation of reactive oxygen species,” Molecular and Cellular Biology, vol. 29, no. 15, pp. 4080–4090, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. L. O'Flaherty, J. Adam, L. C. Heather et al., “Dysregulation of hypoxia pathways in fumarate hydratase-deficient cells is independent of defective mitochondrial metabolism,” Human Molecular Genetics, vol. 19, no. 19, pp. 3844–3851, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. A. Ooi, J. C. Wong, D. Petillo, et al., “An antioxidant response phenotype shared between hereditary and sporadic type 2 papillary renal cell carcinoma,” Cancer Cell, vol. 20, no. 4, pp. 511–523, 2011.
  71. N. F. Villeneuve, A. Lau, and D. D. Zhang, “Regulation of the Nrf2-keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases,” Antioxidants and Redox Signaling, vol. 13, no. 11, pp. 1699–1712, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. J. D. Hayes and M. McMahon, “NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer,” Trends in Biochemical Sciences, vol. 34, no. 4, pp. 176–188, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. G. M. Denicola, F. A. Karreth, T. J. Humpton et al., “Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis,” Nature, vol. 475, no. 7354, pp. 106–110, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. C. Frezza, L. Zheng, O. Folger, et al., “Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase,” Nature, vol. 477, no. 7363, pp. 225–228, 2011.
  75. A. Lau, N. F. Villeneuve, Z. Sun, P. K. Wong, and D. D. Zhang, “Dual roles of Nrf2 in cancer,” Pharmacological Research, vol. 58, no. 5-6, pp. 262–270, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. Y. Inami, S. Waguri, A. Sakamoto et al., “Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells,” The Journal of Cell Biology, vol. 193, no. 2, pp. 275–284, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. E. C. Pfaffenroth and W. M. Linehan, “Genetic basis for kidney cancer: opportunity for disease-specific approaches to therapy,” Expert Opinion on Biological Therapy, vol. 8, no. 6, pp. 779–790, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. N. Raimundo, J. Ahtinen, K. Fumić et al., “Differential metabolic consequences of fumarate hydratase and respiratory chain defects,” Biochimica et Biophysica Acta, vol. 1782, no. 5, pp. 287–294, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. F. Q. Schafer and G. R. Buettner, “Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple,” Free Radical Biology and Medicine, vol. 30, no. 11, pp. 1191–1212, 2001. View at Publisher · View at Google Scholar · View at Scopus
  80. M. Diehn, R. W. Cho, N. A. Lobo et al., “Association of reactive oxygen species levels and radioresistance in cancer stem cells,” Nature, vol. 458, no. 7239, pp. 780–783, 2009. View at Publisher · View at Google Scholar · View at Scopus