About this Journal Submit a Manuscript Table of Contents
International Journal of Cell Biology
Volume 2012 (2012), Article ID 594681, 10 pages
http://dx.doi.org/10.1155/2012/594681
Review Article

Nasopharyngeal Carcinoma Signaling Pathway: An Update on Molecular Biomarkers

1Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
2Department of Biology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand

Received 30 September 2011; Revised 20 December 2011; Accepted 20 December 2011

Academic Editor: R. Seger

Copyright © 2012 Warut Tulalamba and Tavan Janvilisri. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. S. T. Sham, W. I. Wei, Z. Yong-Sheng et al., “Detection of subclinical nasopharyngeal carcinoma by fibreoptic endoscopy and multiple biopsy,” Lancet, vol. 335, no. 8686, pp. 371–374, 1990. View at Publisher · View at Google Scholar · View at Scopus
  2. E. T. Chang and H. O. Adami, “The enigmatic epidemiology of nasopharyngeal carcinoma,” Cancer Epidemiology Biomarkers and Prevention, vol. 15, no. 10, pp. 1765–1777, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. D. M. Parkin and C. S. Muir, “Cancer incidence in five continents. Comparability and quality of data,” IARC Scientific Publications, no. 120, pp. 45–173, 1992. View at Scopus
  4. N. H. Nielsen, F. Mikkelsen, and J. P. H. Hansen, “Nasopharyngeal cancer in Greenland. The incidence in an Arctic Eskimo population,” Acta Pathologica et Microbiologica Scandinavica, vol. 85, no. 6, pp. 850–858, 1977.
  5. B. Brennan, “Nasopharyngeal carcinoma,” Orphanet Journal of Rare Diseases, vol. 1, no. 1, article 23, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. Y. H. Li, C. F. Hu, Q. Shao et al., “Elevated expressions of survivin and VEGF protein are strong independent predictors of survival in advanced nasopharyngeal carcinoma,” Journal of Translational Medicine, vol. 6, article 1, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. K. J. Marcus and R. B. Tishler, “Head and neck carcinomas across the age spectrum: epidemiology, therapy, and late effects,” Seminars in Radiation Oncology, vol. 20, no. 1, pp. 52–57, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. F. L. Greene, D. L. Page, I. D. Fleming, et al., AJCC Cancer Staging Manual, Springer, New York, NY, USA, 2002.
  9. J. T. C. Chang, J. Y. Ko, and R. L. Hong, “Recent advances in the treatment of nasopharyngeal carcinoma,” Journal of the Formosan Medical Association, vol. 103, no. 7, pp. 496–510, 2004. View at Scopus
  10. H. Y. Wang, M. Zhang, P. C. He, B. J. Yang, L. Y. Shao, and W. B. Shao, “Changes of gene expression profile in human myeloma cell line induced by thalidomide,” Journal of Experimental Hematology, vol. 18, no. 2, pp. 396–402, 2010.
  11. C. Y. Logan and R. Nusse, “The Wnt signaling pathway in development and disease,” Annual Review of Cell and Developmental Biology, vol. 20, pp. 781–810, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. P. Bhanot, M. Brink, C. H. Samos et al., “A new member of the frizzled family from Drosophila functions as a wingless receptor,” Nature, vol. 382, no. 6588, pp. 225–231, 1996. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. J. Yang-Snyder, J. R. Miller, J. D. Brown, C. J. Lai, and R. T. Moon, “A frizzled homolog functions in a vertebrate Wnt signaling pathway,” Current Biology, vol. 6, no. 10, pp. 1302–1306, 1996. View at Scopus
  14. J. Noordermeer, J. Klingensmith, N. Perrimon, and R. Nusse, “Dishevelled and armadillo act in the wingless signalling pathway in Drosophila,” Nature, vol. 367, no. 6458, pp. 80–83, 1994. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. W. J. Nelson and R. Nusse, “Convergence of Wnt, β-catenin, and cadherin pathways,” Science, vol. 303, no. 5663, pp. 1483–1487, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. P. Polakis, “Wnt signaling and cancer,” Genes and Development, vol. 14, no. 15, pp. 1837–1851, 2000. View at Scopus
  17. T. S. Jou, D. B. Stewart, J. Stappert, W. J. Nelson, and J. A. Marrs, “Genetic and biochemical dissection of protein linkages in the cadherin- catenin complex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 11, pp. 5067–5071, 1995. View at Publisher · View at Google Scholar · View at Scopus
  18. Q. Zhang, L. Yu, L. Liu et al., “LMP1 antagonizes WNT/β-catenin signalling through inhibition of WTX and promotes nasopharyngeal dysplasia but not tumourigenesis in LMP1 B95-8 transgenic mice,” Journal of Pathology, vol. 223, no. 5, pp. 574–583, 2011. View at Publisher · View at Google Scholar
  19. J. Mazieres, B. He, L. You, Z. Xu, and D. M. Jablons, “Wnt signaling in lung cancer,” Cancer Letters, vol. 222, no. 1, pp. 1–10, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. F. Hollande, J. Pannequin, and D. Joubert, “The long road to colorectal cancer therapy: searching for the right signals,” Drug Resistance Updates, vol. 13, no. 1-2, pp. 44–56, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. R. K. Gandhirajan, S. J. Poll-Wolbeck, I. Gehrke, and K. A. Kreuzer, “Wnt/β-catenin/LEF-1 signaling in chronic lymphocytic leukemia (CLL): a target for current and potential therapeutic options,” Current Cancer Drug Targets, vol. 10, no. 7, pp. 716–727, 2010. View at Scopus
  22. G. Clément, D. M. Jablons, and J. Benhattar, “Targeting the Wnt signaling pathway to treat Barrett's esophagus,” Expert Opinion on Therapeutic Targets, vol. 11, no. 3, pp. 375–389, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. A. K. F. Lo, Y. Liu, X. H. Wang et al., “Alterations of biologic properties and gene expression in nasopharyngeal epithelial cells by the Epstein-Barr virus-encoded latent membrane protein 1,” Laboratory Investigation, vol. 83, no. 5, pp. 697–709, 2003. View at Scopus
  24. V. Sriuranpong, A. Mutirangura, J. W. Gillespie et al., “Global gene expression profile of nasopharyngeal carcinoma by laser capture microdissection and complementary DNA microarrays,” Clinical Cancer Research, vol. 10, no. 15, pp. 4944–4958, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. W. Shi, C. Bastianutto, A. Li et al., “Multiple dysregulated pathways in nasopharyngeal carcinoma revealed by gene expression profiling,” International Journal of Cancer, vol. 119, no. 10, pp. 2467–2475, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. Z. Y. Zeng, Y. H. Zhou, W. L. Zhang et al., “Gene expression profiling of nasopharyngeal carcinoma reveals the abnormally regulated Wnt signaling pathway,” Human Pathology, vol. 38, no. 1, pp. 120–133, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. J. Chou, Y. C. Lin, J. Kim et al., “Nasopharyngeal carcinoma—review of the molecular mechanisms of tumorigenesis,” Head and Neck, vol. 30, no. 7, pp. 946–963, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. Y. C. Lin, L. You, Z. Xu et al., “Wnt signaling activation and WIF-1 silencing in nasopharyngeal cancer cell lines,” Biochemical and Biophysical Research Communications, vol. 341, no. 2, pp. 635–640, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. A. Fendri, A. Khabir, B. Hadri-Guiga et al., “Epigenetic alteration of the Wnt inhibitory factor-1 promoter is common and occurs in advanced stage of Tunisian nasopharyngeal carcinoma,” Cancer Investigation, vol. 28, no. 9, pp. 896–903, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. J. A. Morrison, M. L. Gulley, R. Pathmanathan, and N. Raab-Traub, “Differential signaling pathways are activated in the Epstein-Barr virus-associated malignancies nasopharyngeal carcinoma and Hodgkin lymphoma,” Cancer Research, vol. 64, no. 15, pp. 5251–5260, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. D. N. Everly Jr., S. Kusano, and N. Raab-Traub, “Accumulation of cytoplasmic β-catenin and nuclear glycogen synthase kinase 3β in epstein-barr virus-infected cells,” Journal of Virology, vol. 78, no. 21, pp. 11648–11655, 2004. View at Publisher · View at Google Scholar · View at PubMed
  32. J. A. Morrison and N. Raab-Traub, “Roles of the ITAM and PY motifs of Epstein-Barr virus latent membrane protein 2A in the inhibition of epithelial cell differentiation and activation of β-catenin signaling,” Journal of Virology, vol. 79, no. 4, pp. 2375–2382, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. F.-L. Wang, X. Guo, T.-Z. Yuan et al., “Expression and clinical significance of Wnt-1 and β-catenin in nasopharyngeal carcinoma,” Chinese Journal of Cancer, vol. 28, no. 1, pp. 72–75, 2009.
  34. W. Zhang, Z. Zeng, Y. Zhou et al., “Identification of aberrant cell cycle regulation in Epstein-Barr virus-associated nasopharyngeal carcinoma by cDNA microarray and gene set enrichment analysis,” Acta Biochimica et Biophysica Sinica, vol. 41, no. 5, pp. 414–428, 2009. View at Publisher · View at Google Scholar
  35. A. I. Robles, F. Larcher, R. B. Whalin et al., “Expression of cyclin D1 in epithelial tissues of transgenic mice results in epidermal hyperproliferation and severe thymic hyperplasia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 15, pp. 7634–7638, 1996. View at Publisher · View at Google Scholar · View at Scopus
  36. B. B. S. Zhou and S. J. Elledge, “The DNA damage response: putting checkpoints in perspective,” Nature, vol. 408, no. 6811, pp. 433–439, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. C. F. Hwang, C. L. Cho, C. C. Huang et al., “Loss of cyclin D1 and p16 expression correlates with local recurrence in nasopharyngeal carcinoma following radiotherapy,” Annals of Oncology, vol. 13, no. 8, pp. 1246–1251, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. R. Michalides, N. Van Veelen, A. Hart, B. Loftus, E. Wientjens, and A. Balm, “Overexpression of cyclin D1 correlates with recurrence in a group of forty-seven operable squamous cell carcinomas of the head and neck,” Cancer Research, vol. 55, no. 5, pp. 975–978, 1995. View at Scopus
  39. Q. Ren, H. Sato, S. Murono, M. Furukawa, and T. Yoshizaki, “Epstein-Barr Virus (EBV) latent membrane protein 1 induces interleukin-8 through the nuclear factor-κB signaling pathway in EBV-infected nasopharyngeal carcinoma cell line,” Laryngoscope, vol. 114, no. 5, pp. 855–859, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. C. Man, J. Rosa, L. T. O. Lee et al., “Latent membrane protein 1 suppresses RASSF1A expression, disrupts microtubule structures and induces chromosomal aberrations in human epithelial cells,” Oncogene, vol. 26, no. 21, pp. 3069–3080, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. L. Brooks, Q. Y. Yao, A. B. Rickinson, and L. S. Young, “Epstein-Barr virus latent gene transcription in nasopharyngeal carcinoma cells: coexpression of EBNA1, LMP1, and LMP2 transcripts,” Journal of Virology, vol. 66, no. 5, pp. 2689–2697, 1992. View at Scopus
  42. Z. Li, Y. Ren, S. X. Lin, Y. J. Liang, and H. Z. Liang, “Association of E-cadherin and β-catenin with metastasis in nasopharyngeal carcinoma,” Chinese Medical Journal, vol. 117, no. 8, pp. 1232–1239, 2004. View at Scopus
  43. H. Galera-Ruiz, M. J. Ríos, R. González-Cámpora et al., “The cadherin-catenin complex in nasopharyngeal carcinoma,” European Archives of Oto-Rhino-Laryngology, vol. 268, no. 9, pp. 1335–1341, 2011. View at Publisher · View at Google Scholar · View at PubMed
  44. A. Fendri, A. Khabir, W. Mnejja et al., “PIK3CA amplification is predictive of poor prognosis in Tunisian patients with nasopharyngeal carcinoma,” Cancer Science, vol. 100, no. 11, pp. 2034–2039, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. M. C. Mendoza, E. E. Er, and J. Blenis, “The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation,” Trends in Biochemical Sciences, vol. 36, no. 6, pp. 320–328, 2011. View at Publisher · View at Google Scholar · View at PubMed
  46. G. Song, G. Ouyang, and S. Bao, “The activation of Akt/PKB signaling pathway and cell survival,” Journal of Cellular and Molecular Medicine, vol. 9, no. 1, pp. 59–71, 2005. View at Scopus
  47. M. J. Worsham, G. Pals, J. P. Schouten et al., “Delineating genetic pathways of disease progression in head and neck squamous cell carcinoma,” Archives of Otolaryngology, vol. 129, no. 7, pp. 702–708, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. Y. P. Mei, J. M. Zhou, Y. Wang et al., “Silencing of LMP1 induces cell cycle arrest and enhances chemosensitivity through inhibition of AKT signaling pathway in EBV-positive nasopharyngeal carcinoma cells,” Cell Cycle, vol. 6, no. 11, pp. 1379–1385, 2007. View at Scopus
  49. E. Özyar, A. Ayhan, A. F. Korcum, and I. L. Atahan, “Prognostic role of Ebstein-Barr virus latent membrane protein-1 and Interleukin-10 expression in patients with nasopharyngeal carcinoma,” Cancer Investigation, vol. 22, no. 4, pp. 483–491, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. H. M. Li, Z. Zhuang, Q. Wang et al., “Epstein-Barr virus latent membrane protein 1 (LMP1) upregulates Id1 expression in nasopharyngeal epithelial cells,” Oncogene, vol. 23, no. 25, pp. 4488–4494, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. S. W. Tsao, G. Tramoutanis, C. W. Dawson, A. K. F. Lo, and D. P. Huang, “The significance of LMP1 expression in nasopharyngeal carcinoma,” Seminars in Cancer Biology, vol. 12, no. 6, pp. 473–487, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. B. A. Mainou, D. N. Everly Jr., and N. Raab-Traub, “Epstein-Barr virus latent membrane protein 1 CTAR1 mediates rodent and human fibroblast transformation through activation of PI3K,” Oncogene, vol. 24, no. 46, pp. 6917–6924, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. K. Milde-Langosch, “The Fos family of transcription factors and their role in tumourigenesis,” European Journal of Cancer, vol. 41, no. 16, pp. 2449–2461, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. X. P. Wang, L. G. Sun, N. Liu, H. Y. Yu, Y. Zhang, and Y. Q. Shan, “Effects of basic fibroblast growth factor on protein kinase B activity and c-fos expression in CNE- I nasopharyngeal carcinoma cell line,” Zhonghua Er Bi Yan Hou Ke Za Zhi, vol. 39, pp. 679–682, 2004.
  55. H. Jiang, D. Fan, G. Zhou, X. Li, H. Deng, and L. Zhen, “Phosphatidylinositol 3-kinase inhibitor(LY294002) induces apoptosis of human nasopharyngeal carcinoma in vitro and in vivo,” Journal of Experimental & Clinical Cancer Research, vol. 29, article 34, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. J. M. Garcia Pedrero, D. Garcia Carracedo, C. Muñoz Pinto et al., “Frequent genetic and biochemical alterations of the PI 3-K/AKT/PTEN pathway in head and neck squamous cell carcinoma,” International Journal of Cancer, vol. 114, no. 2, pp. 242–248, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. X. Xu, H. Yang, and X. Huo, “Expression and significance of PTEN in nasopharyngeal carcinoma,” Journal of Clinical Otorhinolaryngology, vol. 18, no. 11, pp. 658–659, 2004. View at Scopus
  58. U. Schagdarsurengin, O. Gimm, H. Dralle, C. Hoang-Vu, and R. Dammann, “CpG island methylation of tumor-related promoters occurs preferentially in undifferentiated carcinoma,” Thyroid, vol. 16, no. 7, pp. 633–642, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. J. Kwong, K. W. Lo, K. F. To, P. M. L. Teo, P. J. Johnson, and D. Poon Huang, “Promoter hypermethylation of multiple genes in nasopharyngeal carcinoma,” Clinical Cancer Research, vol. 8, no. 1, pp. 131–137, 2002. View at Scopus
  60. K. A. West, J. Brognard, A. S. Clark et al., “Rapid Akt activation by nicotine and a tobacco carcinogen modulates the phenotype of normal human airway epithelial cells,” Journal of Clinical Investigation, vol. 111, no. 1, pp. 81–90, 2003. View at Publisher · View at Google Scholar · View at Scopus
  61. K. J. Cowan and K. B. Storey, “Mitogen-activated protein kinases: new signaling pathways functioning in cellular responses to environmental stress,” Journal of Experimental Biology, vol. 206, no. 7, pp. 1107–1115, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. R. Seger and E. G. Krebs, “The MAPK signaling cascade,” FASEB Journal, vol. 9, no. 9, pp. 726–735, 1995. View at Scopus
  63. D. Hammaker and G. S. Firestein, ““Go upstream, young man”: lessons learned from the p38 saga,” Annals of the Rheumatic Diseases, vol. 69, no. 1, pp. i77–i82, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. Y. R. Chen, X. Wang, D. Templeton, R. J. Davis, and T. H. Tan, “The role of c-Jun N-terminal kinase (JNK) in apoptosis induced by ultraviolet C and γ radiation. Duration of JNK activation may determine cell death and proliferation,” Journal of Biological Chemistry, vol. 271, no. 50, pp. 31929–31936, 1996. View at Publisher · View at Google Scholar · View at Scopus
  65. F. Tang, G. Tang, J. Xiang, Q. Dai, M. R. Rosner, and A. Lin, “The absence of NF-κB-mediated inhibition of c-Jun N-terminal kinase activation contributes to tumor necrosis factor alpha-induced apoptosis,” Molecular and Cellular Biology, vol. 22, no. 24, pp. 8571–8579, 2002. View at Publisher · View at Google Scholar · View at Scopus
  66. O. Potapova, S. V. Anisimov, M. Gorospe et al., “Targets of c-Jun NH2-terminal kinase 2-mediated tumor growth regulation revealed by serial analysis of gene expression,” Cancer Research, vol. 62, no. 11, pp. 3257–3263, 2002. View at Scopus
  67. A. G. Eliopoulos and L. S. Young, “Activation of the cJun N-terminal kinase (JNK) pathway by the Epstein-Barr virus-encoded latent membrane protein 1 (LMP1),” Oncogene, vol. 16, no. 13, pp. 1731–1742, 1998. View at Scopus
  68. C. L. Tsai, H. P. Li, Y. J. Lu et al., “Activation of DNA methyltransferase 1 by EBV LMP1 involves c-Jun NH 2-terminal kinase signaling,” Cancer Research, vol. 66, no. 24, pp. 11668–11676, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. S. S. Shklyaev, H. Namba, Y. Sautin et al., “Involvement of wild-type p53 in radiation-induced c-jun N-terminal kinase activation in human thyroid cells,” Anticancer Research, vol. 21, no. 4 A, pp. 2569–2575, 2001. View at Scopus
  70. M. K. Chen, H. S. Lee, J. H. Chang, and C. C. Chang, “Expression of p53 protein and primary tumour volume in patients with nasopharyngeal carcinoma,” Journal of Otolaryngology, vol. 33, no. 5, pp. 304–307, 2004. View at Scopus
  71. L. Li, L. Guo, Y. Tao et al., “Latent membrane protein 1 of Epstein-Barr virus regulates p53 phosphorylation through MAP kinases,” Cancer Letters, vol. 255, no. 2, pp. 219–231, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  72. S. S. Shklyaev, H. Namba, N. Mitsutake et al., “Transient activation of c-Jun NH2-terminal kinase by growth factors influences survival but not apoptosis of human thyrocytes,” Thyroid, vol. 11, no. 7, pp. 629–636, 2001. View at Scopus
  73. M. Schmidt, M. Goebeler, G. Posern et al., “Ras-independent activation of the Raf/MEK/ERK pathway upon calcium-induced differentiation of keratinocytes,” Journal of Biological Chemistry, vol. 275, no. 52, pp. 41011–41017, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. C. C. Bancroft, Z. Chen, G. Dong et al., “Coexpression of proangiogenic factors IL-8 and VEGF by human head and neck squamous cell carcinoma involves coactivation by MEK-MAPK and IKK-NF-κB signal pathways,” Clinical Cancer Research, vol. 7, no. 2, pp. 435–442, 2001. View at Scopus
  75. I. Treinies, H. F. Paterson, S. Hooper, R. Wilson, and C. J. Marshall, “Activated MEK stimulates expression of AP-1 components independently of phosphatidylinositol 3-kinase (PI3-kinase) but requires a PI3-kinase signal to stimulate DNA synthesis,” Molecular and Cellular Biology, vol. 19, no. 1, pp. 321–329, 1999. View at Scopus
  76. R. Treisman, “Regulation of transcription by MAP kinase cascades,” Current Opinion in Cell Biology, vol. 8, no. 2, pp. 205–215, 1996. View at Publisher · View at Google Scholar · View at Scopus
  77. W. C. W. Yung, J. S. T. Sham, D. T. K. Choy, and M. H. Ng, “ras Mutations are uncommon in nasopharyngeal carcinoma,” European Journal of Cancer Part B, vol. 31, no. 6, pp. 399–400, 1995. View at Publisher · View at Google Scholar · View at Scopus
  78. Y. J. Bang, J. H. Kwon, S. H. Kang, J. W. Kim, and Y. C. Yang, “Increased MAPK activity and MKP-1 overexpression in human gastric adenocarcinoma,” Biochemical and Biophysical Research Communications, vol. 250, no. 1, pp. 43–47, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  79. C. M. Schmidt, I. H. McKillop, P. A. Cahill, and J. V. Sitzmann, “Increased MAPK expression and activity in primary human hepatocellular carcinoma,” Biochemical and Biophysical Research Communications, vol. 236, no. 1, pp. 54–58, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. H. Oka, Y. Chatani, R. Hoshino et al., “Constitutive activation of mitogen-activated protein (MAP) kinases in human renal cell carcinoma,” Cancer Research, vol. 55, no. 18, pp. 4182–4187, 1995. View at Scopus
  81. P. J. Roberts and C. J. Der, “Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer,” Oncogene, vol. 26, no. 22, pp. 3291–3310, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. J. Downward, “Targeting RAS signalling pathways in cancer therapy,” Nature Reviews Cancer, vol. 3, no. 1, pp. 11–22, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  83. L. Ruan, G. L. Wang, H. Yi et al., “Raf kinase inhibitor protein correlates with sensitivity of nasopharyngeal carcinoma to radiotherapy,” Journal of Cellular Biochemistry, vol. 110, no. 4, pp. 975–984, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  84. V. C. L. Wong, H. Chen, J. M. Y. Ko et al., “Tumor suppressor dual-specificity phosphatase 6 (DUSP6) impairs cell invasion and epithelial-mesenchymal transition (EMT)-associated phenotype,” International Journal of Cancer, vol. 130, no. 1, pp. 83–95, 2012. View at Publisher · View at Google Scholar · View at PubMed
  85. E. Kerkhoff and U. R. Rapp, “Cell cycle targets of Ras/Raf signalling,” Oncogene, vol. 17, no. 11, pp. 1457–1462, 1998. View at Scopus
  86. Z. Zhang, D. Sun, N. V. Do, A. Tang, L. Hu, and G. Huang, “Inactivation of RASSF2A by promoter methylation correlates with lymph node metastasis in nasopharyngeal carcinoma,” International Journal of Cancer, vol. 120, no. 1, pp. 32–38, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  87. S. S. Wang, Z. Z. Guan, Y. Q. Xiang et al., “Significance of EGFR and p-ERK expression in nasopharyngeal carcinoma,” Chinese Journal of Oncology, vol. 28, no. 1, pp. 28–31, 2006. View at Scopus
  88. H. J. Yang, Y. J. Cho, H. S. Kim, M. S. Chang, M. W. Sung, and W. H. Kim, “Association of p53 and bcl-2 expression with Epstein-Barr virus infection in the cancers of head and neck,” Head and Neck, vol. 23, no. 8, pp. 629–636, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  89. M. K. Chen, S. F. Yang, J. C. Lai et al., “Expression of bcl-2 correlates with poor prognosis and modulates migration of nasopharyngeal carcinoma cells,” Clinica Chimica Acta, vol. 411, no. 5-6, pp. 400–405, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  90. A. Fendri, C. K. Kontos, A. Khabir, R. Mokdad-Gargouri, and A. Scorilas, “BCL2L12 is a novel biomarker for the prediction of short-term relapse in nasopharyngeal carcinoma,” Molecular Medicine, vol. 17, no. 3-4, pp. 163–171, 2011. View at Publisher · View at Google Scholar · View at PubMed
  91. K. W. Yip, W. Shi, M. Pintilie et al., “Prognostic significance of the Epstein-Barr virus, p53, Bcl-2, and survivin in nasopharyngeal cancer,” Clinical Cancer Research, vol. 12, no. 19, pp. 5726–5732, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  92. Y. Yu, W. Dong, X. Li, E. Yu, X. Zhou, and S. Li, “Significance of c-Myc and Bcl-2 protein expression in nasopharyngeal carcinoma,” Archives of Otolaryngology, vol. 129, no. 12, pp. 1322–1326, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  93. L. F. Sheu, A. Chen, H. S. Lee, H. Y. Hsu, and D. S. Yu, “Cooperative interactions among p53, bcl-2 and Epstein-Barr virus latent membrane protein 1 in nasopharyngeal carcinoma cells,” Pathology International, vol. 54, no. 7, pp. 475–485, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  94. M. K. Chen, J. C. Lai, C. C. Chang, J. H. Chang, Y. J. Chang, and H. C. Chen, “Prognostic impact of bcl-2 expression on advanced nasopharyngeal carcinoma,” Head and Neck, vol. 30, no. 8, pp. 1052–1057, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  95. J. X. Li, K. Y. Zhou, K. R. Cai, T. Liang, X. D. Tang, and Y. F. Zhang, “Knockdown of bcl-xL expression with RNA interference induces nasopharyngeal carcinoma cells apoptosis,” Chinese Journal of Otorhinolaryngology Head and Neck Surgery, vol. 40, no. 5, pp. 347–351, 2005.
  96. J. S. Burgos, “Involvement of the Epstein-Barr virus in the nasopharyngeal carcinoma pathogenesis,” Medical Oncology, vol. 22, no. 2, pp. 113–121, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  97. H. C. Wu, T. Y. Lu, J. J. Lee et al., “MDM2 expression in EBV-infected nasopharyngeal carcinoma cells,” Laboratory Investigation, vol. 84, no. 12, pp. 1547–1556, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  98. A. K. F. Lo, W. L. Kwok, W. T. Sai et al., “Epstein-Barr virus infection alters cellular signal cascades in human nasopharyngeal epithelial cells,” Neoplasia, vol. 8, no. 3, pp. 173–180, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  99. L. Deng, J. Yang, X. R. Zhao et al., “Cells in G2/M phase increased in human nasopharyngeal carcinoma cell line by EBV-LMP1 through activation of NF-kappaB and AP-1,” Cell Research, vol. 13, no. 3, pp. 187–194, 2003. View at Scopus
  100. T. Yoshizaki, M. Ito, S. Murono, N. Wakisaka, S. Kondo, and K. Endo, “Current understanding and management of nasopharyngeal carcinoma,” Auris Nasus Larynx, vol. 39, no. 2, pp. 137–144, 2012.
  101. Y. Zhang, Y. Xiong, and W. G. Yarbrough, “ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways,” Cell, vol. 92, no. 6, pp. 725–734, 1998. View at Publisher · View at Google Scholar · View at Scopus
  102. A. Yang, M. Kaghad, Y. Wang et al., “p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities,” Molecular Cell, vol. 2, no. 3, pp. 305–316, 1998. View at Scopus
  103. T. Crook, J. M. Nicholls, L. Brooks, J. O'Nions, and M. J. Allday, “High level expression of ΔN-p63: a mechanism for the inactivation of p53 in undifferentiated nasopharyngeal carcinoma (NPC)?” Oncogene, vol. 19, no. 30, pp. 3439–3444, 2000. View at Scopus
  104. O. Potapova, M. Gorospe, R. H. Dougherty, N. M. Dean, W. A. Gaarde, and N. J. Holbrook, “Inhibition of c-Jun N-terminal kinase 2 expression suppresses growth and induces apoptosis of human tumor cells in a p53-dependent manner,” Molecular and Cellular Biology, vol. 20, no. 5, pp. 1713–1722, 2000. View at Publisher · View at Google Scholar · View at Scopus
  105. S.-M. Fu, Y.-T. Wang, Z.-H. Tu et al., “Study on the expression of survivin mRNA and protein in nasopharyngeal carcinoma,” Chinese Journal of Medical Genetics, vol. 25, no. 2, pp. 179–182, 2008.
  106. T. Faqing, H. Zhi, Y. Liqun et al., “Epstein-Barr virus LMP1 initiates cell proliferation and apoptosis inhibition via regulating expression of survivin in nasopharyngeal carcinoma,” Experimental Oncology, vol. 27, no. 2, pp. 96–101, 2005. View at Scopus
  107. M. D. Ai, X. R. Zhao, Y. Wu, J. P. Gong, and Y. Cao, “Regulation of survivin and CDK4 by Epstein-Barr virus encoded latent membrane protein 1 in nasopharyngeal carcinoma cell lines,” Cell Research, vol. 15, no. 10, pp. 777–784, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  108. Y. Xiang, H. Yao, S. Wang et al., “Prognostic value of Survivin and Livin in nasopharyngeal carcinoma,” Laryngoscope, vol. 116, no. 1, pp. 126–130, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  109. W. Jiang, Y. Liao, S. Zhao, et al., “Role of enhanced radiosensitivity and the tumor-specific suicide gene vector in gene therapy of nasopharyngeal carcinoma,” Journal of Radiation Research, vol. 48, pp. 211–218, 2007.
  110. J. P. Liu, L. Cassar, A. Pinto, and H. Li, “Mechanisms of cell immortalization mediated by EB viral activation of telomerase in nasopharyngeal carcinoma,” Cell Research, vol. 16, no. 10, pp. 809–817, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  111. H. M. Li, C. Man, Y. Jin et al., “Molecular and cytogenetic changes involved in the immortalization of nasopharyngeal epithelial cells by telomerase,” International Journal of Cancer, vol. 119, no. 7, pp. 1567–1576, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  112. L. Ding, J. Yang, G. T. Yong et al., “Epstein-Barr virus encoded latent membrane protein 1 modulates nuclear translocation of telomerase reverse transcriptase protein by activating nuclear factor-κB p65 in human nasopharyngeal carcinoma cells,” International Journal of Biochemistry and Cell Biology, vol. 37, no. 9, pp. 1881–1889, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  113. J. Yang, X. Deng, L. Deng, H. Gu, W. Fan, and Y. Cao, “Telomerase activation by Epstein-Barr virus latent membrane protein 1 is associated with c-Myc expression in human nasopharyngeal epithelial cells,” Journal of Experimental and Clinical Cancer Research, vol. 23, no. 3, pp. 495–506, 2004. View at Scopus
  114. D. T. T. Chua, J. M. Nicholls, J. S. T. Sham, and G. K. H. Au, “Prognostic value of epidermal growth factor receptor expression in patients with advanced stage nasopharyngeal carcinoma treated with induction chemotherapy and radiotherapy,” International Journal of Radiation Oncology Biology Physics, vol. 59, no. 1, pp. 11–20, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  115. J. Pan, L. Kong, S. Lin, G. Chen, Q. Chen, and J. J. Lu, “The clinical significance of coexpression of cyclooxygenases-2, vascular endothelial growth factors, and epidermal growth factor receptor in nasopharyngeal carcinoma,” Laryngoscope, vol. 118, no. 11, pp. 1970–1975, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  116. T. S. Sheen, Y. T. Huang, Y. L. Chang et al., “Epstein-Barr virus-encoded latent membrane protein 1 co-expresses with epidermal growth factor receptor in nasopharyngeal carcinoma,” Japanese Journal of Cancer Research, vol. 90, no. 12, pp. 1285–1292, 1999. View at Scopus
  117. R. Soo, T. Putti, Q. Tao et al., “Overexpression of cyclooxygenase-2 in nasopharyngeal carcinoma and association with epidermal growth factor receptor expression,” Archives of Otolaryngology, vol. 131, no. 2, pp. 147–152, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  118. X. Zheng, L. Hu, F. Chen, and B. Christensson, “Expression of Ki67 antigen, epidermal growth factor receptor and Epstein-Barr virus encoded latent membrane protein (LMP1) in nasopharyngeal carcinoma,” European Journal of Cancer Part B, vol. 30, no. 5, pp. 290–295, 1994. View at Publisher · View at Google Scholar · View at Scopus
  119. A. S. Goustin, E. B. Leof, G. D. Shipley, and H. L. Moses, “Growth factors and cancer,” Cancer Research, vol. 46, no. 3, pp. 1015–1029, 1986. View at Scopus
  120. Y. Tao, X. Song, X. Deng et al., “Nuclear accumulation of epidermal growth factor receptor and acceleration of G1/S stage by Epstein-Barr-encoded oncoprotein latent membrane protein 1,” Experimental Cell Research, vol. 303, no. 2, pp. 240–251, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  121. C. H. Hsu, M. Gao, C. L. Chen, P. Y. Yeh, and A. L. Cheng, “Inhibitors of epidermoid growth factor receptor suppress cell growth and enhance chemosensitivity of nasopharyngeal cancer cells in vitro,” Oncology, vol. 68, no. 4-6, pp. 538–547, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  122. D. P. Bartel, “MicroRNAs: genomics, biogenesis, mechanism, and function,” Cell, vol. 116, no. 2, pp. 281–297, 2004. View at Publisher · View at Google Scholar · View at Scopus
  123. G. Stefani and F. J. Slack, “Small non-coding RNAs in animal development,” Nature Reviews Molecular Cell Biology, vol. 9, no. 3, pp. 219–230, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  124. D. P. Bartel, “MicroRNAs: target recognition and regulatory functions,” Cell, vol. 136, no. 2, pp. 215–233, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  125. K. Cosmopoulos, M. Pegtel, J. Hawkins et al., “Comprehensive profiling of epstein-barr virus microRNAs in nasopharyngeal carcinoma,” Journal of Virology, vol. 83, no. 5, pp. 2357–2367, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  126. A. M. G. Wong, K. L. Kong, J. W. H. Tsang, D. L. W. Kwong, and X.-Y. Guan, “Profiling of Epstein-Barr virus-encoded microRNAs in nasopharyngeal carcinoma reveals potential biomarkers and oncomirs,” Cancer, vol. 118, no. 3, pp. 698–710, 2012. View at Publisher · View at Google Scholar · View at PubMed
  127. A. K. F. Lo, F. T. Ka, W. L. Kwok et al., “Modulation of LMP1 protein expression by EBV-encoded microRNAs,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 41, pp. 16164–16169, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  128. A. Kaykas and B. Sugden, “The amino-terminus and membrane-spanning domains of LMP-1 inhibit cell proliferation,” Oncogene, vol. 19, no. 11, pp. 1400–1410, 2000. View at Scopus
  129. H. C. Chen, G. H. Chen, Y. H. Chen et al., “MicroRNA deregulation and pathway alterations in nasopharyngeal carcinoma,” British Journal of Cancer, vol. 100, no. 6, pp. 1002–1011, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  130. S. Sengupta, J. A. Den Boon, I. H. Chen et al., “MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 15, pp. 5874–5878, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus