About this Journal Submit a Manuscript Table of Contents
International Journal of Cell Biology
Volume 2012 (2012), Article ID 760498, 7 pages
http://dx.doi.org/10.1155/2012/760498
Review Article

Autophagy in Pancreatic Cancer

Parc Scientifique et Technologique de Luminy, Stress Cellulaire, INSERM U624, 163 avenue de Luminy, CP 915, 13288 Marseille Cedex 9, France

Received 1 August 2011; Accepted 13 October 2011

Academic Editor: G. S. Stein

Copyright © 2012 Daniel Grasso et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. C. Farré, R. Krick, S. Subramani, and M. Thumm, “Turnover of organelles by autophagy in yeast,” Current Opinion in Cell Biology, vol. 21, no. 4, pp. 522–530, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. Z. Yang and D. J. Klionsky, “Mammalian autophagy: core molecular machinery and signaling regulation,” Current Opinion in Cell Biology, vol. 22, no. 2, pp. 124–131, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. F. Reggiori and D. J. Klionsky, “Autophagosomes: biogenesis from scratch?” Current Opinion in Cell Biology, vol. 17, no. 4, pp. 415–422, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. K. Suzuki and Y. Ohsumi, “Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae,” FEBS Letters, vol. 581, no. 11, pp. 2156–2161, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. N. Hosokawa, T. Hara, T. Kaizuka et al., “Nutrient-dependent mTORCl association with the ULK1-Atg13-FIP200 complex required for autophagy,” Molecular Biology of the Cell, vol. 20, no. 7, pp. 1981–1991, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. I. G. Ganley, D. H. Lam, J. Wang, X. Ding, S. Chen, and X. Jiang, “ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy,” Journal of Biological Chemistry, vol. 284, no. 18, pp. 12297–12305, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. C. H. Jung, C. B. Jun, S. H. Ro et al., “ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery,” Molecular Biology of the Cell, vol. 20, no. 7, pp. 1992–2003, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. C. A. Mercer, A. Kaliappan, and P. B. Dennis, “A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy,” Autophagy, vol. 5, no. 5, pp. 649–662, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Wirawan, T. V. Berghe, S. Lippens, P. Agostinis, and P. Vandenabeele, “Autophagy: for better or for worse,” Cell Research, vol. 22, no. 1, pp. 43–61, 2012. View at Publisher · View at Google Scholar · View at PubMed
  10. N. Mizushima, A. Kuma, Y. Kobayashi et al., “Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate,” Journal of Cell Science, vol. 116, no. 9, pp. 1679–1688, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Kabeya, N. Mizushima, A. Yamamoto, S. Oshitani-Okamoto, Y. Ohsumi, and T. Yoshimori, “LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation,” Journal of Cell Science, vol. 117, no. 13, pp. 2805–2812, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. M. I. Vaccaro, “Autophagy and pancreas disease,” Pancreatology, vol. 8, no. 4-5, pp. 425–429, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. A. M. Cuervo, “Autophagy: in sickness and in health,” Trends in Cell Biology, vol. 14, no. 2, pp. 70–77, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. B. Levine and G. Kroemer, “Autophagy in the pathogenesis of disease,” Cell, vol. 132, no. 1, pp. 27–42, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. R. J. Youle and D. P. Narendra, “Mechanisms of mitophagy,” Nature Reviews Molecular Cell Biology, vol. 12, no. 1, pp. 9–14, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. C. Vives-Bauza and S. Przedborski, “Mitophagy: the latest problem for Parkinson's disease,” Trends in Molecular Medicine, vol. 17, no. 3, pp. 158–165, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. C. J. Wray, S. A. Ahmad, J. B. Matthews, and A. M. Lowy, “Surgery for pancreatic cancer: recent controversies and current practice,” Gastroenterology, vol. 128, no. 6, pp. 1626–1641, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, and M. J. Thun, “Cancer statistics, 2009,” CA Cancer Journal for Clinicians, vol. 59, no. 4, pp. 225–249, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. J. P. Morris, S. C. Wang, and M. Hebrok, “KRAS, Hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma,” Nature Reviews Cancer, vol. 10, no. 10, pp. 683–695, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. T. Furukawa, M. Sunamura, and A. Horii, “Molecular mechanisms of pancreatic carcinogenesis,” Cancer Science, vol. 97, no. 1, pp. 1–7, 2006. View at Publisher · View at Google Scholar · View at PubMed
  21. G. Réz, S. Tóth, and Z. Pálfia, “Cellular autophagic capacity is highly increased in azaserine-induced premalignant atypical acinar nodule cells,” Carcinogenesis, vol. 20, no. 10, pp. 1893–1898, 1999. View at Publisher · View at Google Scholar
  22. R. Köchl, X. W. Hu, E. Y. W. Chan, and S. A. Tooze, “Microtubules facilitate autophagosome formation and fusion of autophagosomes with endosomes,” Traffic, vol. 7, no. 2, pp. 129–145, 2006. View at Publisher · View at Google Scholar · View at PubMed
  23. S. Fujii, S. Mitsunaga, M. Yamazaki et al., “Autophagy is activated in pancreatic cancer cells and correlates with poor patient outcome,” Cancer Science, vol. 99, no. 9, pp. 1813–1819, 2008. View at Publisher · View at Google Scholar · View at PubMed
  24. N. M. Mazure and J. Pouysségur, “Hypoxia-induced autophagy: cell death or cell survival?” Current Opinion in Cell Biology, vol. 22, no. 2, pp. 177–180, 2010. View at Publisher · View at Google Scholar · View at PubMed
  25. K. Tracy, B. C. Dibling, B. T. Spike, J. R. Knabb, P. Schumacker, and K. F. Macleod, “BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy,” Molecular and Cellular Biology, vol. 27, no. 17, pp. 6229–6242, 2007. View at Publisher · View at Google Scholar · View at PubMed
  26. S. Pattingre, A. Tassa, X. Qu et al., “Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy,” Cell, vol. 122, no. 6, pp. 927–939, 2005. View at Publisher · View at Google Scholar · View at PubMed
  27. S. Yang, X. Wang, G. Contino et al., “Pancreatic cancers require autophagy for tumor growth,” Genes and Development, vol. 25, no. 7, pp. 717–729, 2011. View at Publisher · View at Google Scholar · View at PubMed
  28. J. Okami, D. M. Simeone, and C. D. Logsdon, “Silencing of the hypoxia-inducible cell death protein BNIP3 in pancreatic cancer,” Cancer Research, vol. 64, no. 15, pp. 5338–5346, 2004. View at Publisher · View at Google Scholar · View at PubMed
  29. M. Akada, T. Crnogorac-Jurcevic, S. Lattimore et al., “Intrinsic chemoresistance to gemcitabine is associated with decreased expression of BNIP3 in pancreatic cancer,” Clinical Cancer Research, vol. 11, no. 8, pp. 3094–3101, 2005. View at Publisher · View at Google Scholar · View at PubMed
  30. G. M. DeNicola, F. A. Karreth, T. J. Humpton et al., “Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis,” Nature, vol. 475, no. 7354, pp. 106–110, 2011. View at Publisher · View at Google Scholar · View at PubMed
  31. M. Neeper, A. M. Schmidt, J. Brett et al., “Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins,” Journal of Biological Chemistry, vol. 267, no. 21, pp. 14998–15004, 1992.
  32. L. G. Bucciarelli, T. Wendt, L. Rong et al., “RAGE is a multiligand receptor of the immunoglobulin superfamily: implications for homeostasis and chronic disease,” Cellular and Molecular Life Sciences, vol. 59, no. 7, pp. 1117–1128, 2002. View at Publisher · View at Google Scholar
  33. G. Basta, G. Lazzerini, S. Del Turco, G. M. Ratto, A. M. Schmidt, and R. De Caterina, “At least 2 distinct pathways generating reactive oxygen species mediate vascular cell adhesion molecule-1 induction by advanced glycation end products,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 7, pp. 1401–1407, 2005. View at Publisher · View at Google Scholar · View at PubMed
  34. W. Cai, J. C. He, L. Zhu, C. Lu, and H. Vlassara, “Advanced glycation end product (AGE) receptor 1 suppresses cell oxidant stress and activation signaling via EGF receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 37, pp. 13801–13806, 2006. View at Publisher · View at Google Scholar · View at PubMed
  35. P. Alexiou, M. Chatzopoulou, K. Pegklidou, and V. J. Demopoulos, “RAGE: a multi-ligand receptor unveiling novel insights in health and disease,” Current Medicinal Chemistry, vol. 17, no. 21, pp. 2232–2252, 2010. View at Publisher · View at Google Scholar
  36. A. Rojas, H. Figueroa, and E. Morales, “Fueling inflammation at tumor microenvironment: the role of multiligand/rage axis,” Carcinogenesis, vol. 31, no. 3, pp. 334–341, 2010. View at Publisher · View at Google Scholar · View at PubMed
  37. C. D. Logsdon, M. K. Fuentes, E. H. Huang, and T. Arumugam, “RAGE and RAGE ligands in cancer,” Current Molecular Medicine, vol. 7, no. 8, pp. 777–789, 2007. View at Publisher · View at Google Scholar
  38. R. Abe and S. Yamagishi, “AGE-RAGE system and carcinogenesis,” Current Pharmaceutical Design, vol. 14, no. 10, pp. 940–945, 2008. View at Publisher · View at Google Scholar
  39. M. K. Fuentes, S. S. Nigavekar, T. Arumugam et al., “RAGE activation by S100P in colon cancer stimulates growth, migration, and cell signaling pathways,” Diseases of the Colon and Rectum, vol. 50, no. 8, pp. 1230–1240, 2007. View at Publisher · View at Google Scholar · View at PubMed
  40. R. Kang, D. Tang, N. E. Schapiro et al., “The receptor for advanced glycation end products (RAGE) sustains autophagy and limits apoptosis, promoting pancreatic tumor cell survival,” Cell Death and Differentiation, vol. 17, no. 4, pp. 666–676, 2010. View at Publisher · View at Google Scholar
  41. D. Tang, R. Kang, H. J. Zeh, and M. T. Lotze, “High-mobility group box 1 and cancer,” Biochimica et Biophysica Acta, vol. 1799, no. 1-2, pp. 131–140, 2010. View at Publisher · View at Google Scholar · View at PubMed
  42. Y. Liu, R. Prasad, and S. H. Wilson, “HMGB1: roles in base excision repair and related function,” Biochimica et Biophysica Acta, vol. 1799, no. 1-2, pp. 119–130, 2010. View at Publisher · View at Google Scholar · View at PubMed
  43. R. Kang, D. Tang, K. M. Livesey, N. E. Schapiro, M. T. Lotze, and H. J. Zeh, “The receptor for advanced glycation end-products (RAGE) protects pancreatic tumor cells against oxidative injury,” Antioxidants and Redox Signaling, vol. 15, no. 8, pp. 2175–2184, 2011. View at Publisher · View at Google Scholar · View at PubMed
  44. J. Du, S. M. Martin, M. Levine et al., “Mechanisms of ascorbate-induced cytotoxicity in pancreatic cancer,” Clinical Cancer Research, vol. 16, no. 2, pp. 509–520, 2010. View at Publisher · View at Google Scholar · View at PubMed
  45. J. J. Cullen, “Ascorbate induces autophagy in pancreatic cancer,” Autophagy, vol. 6, no. 3, pp. 421–422, 2010. View at Publisher · View at Google Scholar
  46. H. L. Pahl, “Activators and target genes of Rel/NF-κB transcription factors,” Oncogene, vol. 18, no. 49, pp. 6853–6866, 1999.
  47. D. Tang, R. Kang, K. M. Livesey et al., “Endogenous HMGB1 regulates autophagy,” Journal of Cell Biology, vol. 190, no. 5, pp. 881–892, 2010. View at Publisher · View at Google Scholar · View at PubMed
  48. T. Ozben, “Oxidative stress and apoptosis: impact on cancer therapy,” Journal of Pharmaceutical Sciences, vol. 96, no. 9, pp. 2181–2196, 2007. View at Publisher · View at Google Scholar · View at PubMed
  49. R. Pardo, A. Lo Ré, C. Archange et al., “Gemcitabine induces the VMP1-mediated autophagy pathway to promote apoptotic death in human pancreatic cancer cells,” Pancreatology, vol. 10, no. 1, pp. 19–26, 2010. View at Publisher · View at Google Scholar · View at PubMed
  50. M. Donadelli, I. Dando, T. Zaniboni et al., “Gemcitabine/cannabinoid combination triggers autophagy in pancreatic cancer cells through a ROS-mediated mechanism,” Cell Death and Disease, vol. 2, no. 4, article e152, 2011. View at Publisher · View at Google Scholar · View at PubMed
  51. A. Carracedo, M. Gironella, M. Lorente et al., “Cannabinoids induce apoptosis of pancreatic tumor cells via endoplasmic reticulum stress-related genes,” Cancer Research, vol. 66, no. 13, pp. 6748–6755, 2006. View at Publisher · View at Google Scholar · View at PubMed
  52. A. Carracedo, M. Lorente, A. Egia et al., “The stress-regulated protein p8 mediates cannabinoid-induced apoptosis of tumor cells,” Cancer Cell, vol. 9, no. 4, pp. 301–312, 2006. View at Publisher · View at Google Scholar · View at PubMed
  53. M. Salazar, A. Carracedo, J. Salanueva et al., “Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells,” Journal of Clinical Investigation, vol. 119, no. 5, pp. 1359–1372, 2009. View at Publisher · View at Google Scholar
  54. M. K. Kim and J. H. Park, “Conference on "Multidisciplinary approaches to nutritional problems". Symposium on "Nutrition and health". Cruciferous vegetable intake and the risk of human cancer: epidemiological evidence,” Proceedings of the Nutrition Society, vol. 68, no. 1, pp. 103–110, 2009.
  55. P. Naumann, F. Fortunato, H. Zentgraf, M. W. Büchler, I. Herr, and J. Werner, “Autophagy and cell death signaling following dietary sulforaphane act independently of each other and require oxidative stress in pancreatic cancer,” International Journal of Oncology, vol. 39, no. 1, pp. 101–109, 2011. View at Publisher · View at Google Scholar · View at PubMed
  56. W. M. Liu and X. A. Zhang, “KAI1/CD82, a tumor metastasis suppressor,” Cancer Letters, vol. 240, no. 2, pp. 183–194, 2006. View at Publisher · View at Google Scholar · View at PubMed
  57. J. H. Xu, X. Z. Guo, L. N. Ren, L. C. Shao, and M. P. Liu, “KAI1 is a potential target for anti-metastasis in pancreatic cancer cells,” World Journal of Gastroenterology, vol. 14, no. 7, pp. 1126–1132, 2008. View at Publisher · View at Google Scholar
  58. C.-Y. Wu, J. Yan, Y.-F. Yang et al., “Overexpression of KAI1 induces autophagy and increases MiaPaCa-2 cell survival through the phosphorylation of extracellular signal-regulated kinases,” Biochemical and Biophysical Research Communications, vol. 404, no. 3, pp. 802–808, 2011. View at Publisher · View at Google Scholar · View at PubMed
  59. J. C. Maher, A. Krishan, and T. J. Lampidis, “Greater cell cycle inhibition and cytotoxicity induced by 2-deoxy-D-glucose in tumor cells treated under hypoxic vs aerobic conditions,” Cancer Chemotherapy and Pharmacology, vol. 53, no. 2, pp. 116–122, 2004. View at Publisher · View at Google Scholar · View at PubMed
  60. H. Xi, M. Kurtoglu, H. Liu et al., “2-Deoxy-d-glucose activates autophagy via endoplasmic reticulum stress rather than ATP depletion,” Cancer Chemotherapy and Pharmacology, vol. 67, no. 4, pp. 899–910, 2011. View at Publisher · View at Google Scholar · View at PubMed
  61. S. Yang and A. C. Kimmelman, “A critical role for autophagy in pancreatic cancer,” Autophagy, vol. 7, no. 8, pp. 912–913, 2011. View at Publisher · View at Google Scholar
  62. A. Udelnow, A. Kreyes, S. Ellinger et al., “Omeprazole inhibits proliferation and modulates autophagy in pancreatic cancer cells,” PLoS ONE, vol. 6, no. 5, article e20143, 2011. View at Publisher · View at Google Scholar · View at PubMed
  63. A. de Milito and S. Fais, “Proton pump inhibitors may reduce tumour resistance,” Expert Opinion on Pharmacotherapy, vol. 6, no. 7, pp. 1049–1054, 2005. View at Publisher · View at Google Scholar · View at PubMed
  64. A. de Milito, E. Iessi, M. Logozzi et al., “Proton pump inhibitors induce apoptosis of human B-cell tumors through a caspase-independent mechanism involving reactive oxygen species,” Cancer Research, vol. 67, no. 11, pp. 5408–5417, 2007. View at Publisher · View at Google Scholar · View at PubMed
  65. J. Y. Guo, H. -Y. Chen, R. Mathew et al., “Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis,” Genes and Development, vol. 25, no. 5, pp. 460–470, 2011. View at Publisher · View at Google Scholar · View at PubMed
  66. U. E. Martinez-Outschoorn, Z. Lin, C. Trimmer et al., “Cancer cells metabolically "fertilize" the tumor microenvironment with hydrogen peroxide, driving the Warburg effect: implications for PET imaging of human tumors,” Cell Cycle, vol. 10, no. 15, pp. 2504–2520, 2011. View at Publisher · View at Google Scholar