About this Journal Submit a Manuscript Table of Contents
International Journal of Cell Biology
Volume 2012 (2012), Article ID 843505, 13 pages
http://dx.doi.org/10.1155/2012/843505
Review Article

Pathological Significance of Mitochondrial Glycation

MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Cambridge CB2 0XY, UK

Received 28 February 2012; Accepted 1 May 2012

Academic Editor: Juan P. Bolaños

Copyright © 2012 Pamela Boon Li Pun and Michael P. Murphy. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Brownlee, “Biochemistry and molecular cell biology of diabetic complications,” Nature, vol. 414, no. 6865, pp. 813–820, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. N. Rabbani and P. J. Thornalley, “Glyoxalase in diabetes, obesity and related disorders,” Seminars in Cell and Developmental Biology, vol. 22, no. 3, pp. 309–317, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Morcos, X. Du, F. Pfisterer et al., “Glyoxalase-1 prevents mitochondrial protein modification and enhances lifespan in Caenorhabditis elegans,” Aging Cell, vol. 7, no. 2, pp. 260–269, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Xue, N. Rabbani, and P. J. Thornalley, “Glyoxalase in ageing,” Seminars in Cell and Developmental Biology, vol. 22, no. 3, pp. 293–301, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Cerami, “Aging of proteins and nucleic acids: what is the role of glucose?” Trends in Biochemical Sciences, vol. 11, no. 8, pp. 311–314, 1986. View at Scopus
  6. P. J. Thornalley, S. Battah, N. Ahmed et al., “Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry,” Biochemical Journal, vol. 375, no. 3, pp. 581–592, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Dobler, N. Ahmed, L. Song, K. E. Eboigbodin, and P. J. Thornalley, “Increased dicarbonyl metabolism in endothelial cells in hyperglycemia induces anoikis and impairs angiogenesis by RGD and GFOGER motif modification,” Diabetes, vol. 55, no. 7, pp. 1961–1969, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Li, S. Nakamura, S. Miyazaki et al., “N2-carboxyethyl-2′-deoxyguanosine, a DNA glycation marker, in kidneys and aortas of diabetic and uremic patients,” Kidney International, vol. 69, no. 2, pp. 388–392, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. A. J. Oudes, C. M. Herr, Y. Olsen, and J. E. Fleming, “Age-dependent accumulation of advanced glycation end-products in adult Drosophila melanogaster,” Mechanisms of Ageing and Development, vol. 100, no. 3, pp. 221–229, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. J. M. Haus, J. A. Carrithers, S. W. Trappe, and T. A. Trappe, “Collagen, cross-linking, and advanced glycation end products in aging human skeletal muscle,” Journal of Applied Physiology, vol. 103, no. 6, pp. 2068–2076, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. P. J. Thornalley, “The enzymatic defence against glycation in health, disease and therapeutics: a symposium to examine the concept,” Biochemical Society Transactions, vol. 31, no. 6, pp. 1341–1342, 2003. View at Scopus
  12. J. de Groot, N. Verzijl, M. J. G. Wenting-van Wijk et al., “Age-related decrease in susceptibility of human articular cartilage to matrix metalloproteinase-mediated degradation—the role of advanced glycation end products,” Arthritis & Rheumatism, vol. 44, no. 11, pp. 2562–2571, 2001.
  13. M. Luthra and D. Balasubramanian, “Nonenzymatic glycation alters protein structure and stability. A study of two eye lens crystallins,” Journal of Biological Chemistry, vol. 268, no. 24, pp. 18119–18127, 1993. View at Scopus
  14. A. J. Bailey, R. G. Paul, and L. Knott, “Mechanisms of maturation and ageing of collagen,” Mechanisms of Ageing and Development, vol. 106, no. 1-2, pp. 1–56, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Ulrich and A. Cerami, “Protein glycation, diabetes, and aging,” Recent Progress in Hormone Research, vol. 56, pp. 1–21, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. M. J. C. Crabbe, L. R. Cooper, and D. W. Corne, “Use of essential and molecular dynamics to study γB-crystallin unfolding after non-enzymic post-translational modifications,” Computational Biology and Chemistry, vol. 27, no. 4-5, pp. 507–510, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. D. R. Sell and V. M. Monnier, “Ornithine is a novel amino acid and a marker of arginine damage by oxoaldehydes in senescent proteins,” Annals of the New York Academy of Sciences, vol. 1043, pp. 118–128, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Hamelin, J. Mary, M. Vostry, B. Friguet, and H. Bakala, “Glycation damage targets glutamate dehydrogenase in the rat liver mitochondrial matrix during aging,” FEBS Journal, vol. 274, no. 22, pp. 5949–5961, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. J. R. Requena, M. U. Ahmed, C. W. Fountain et al., “Carboxymethylethanolamine, a biomarker of phospholipid modification during the Maillard reaction in vivo,” Journal of Biological Chemistry, vol. 272, no. 28, pp. 17473–17479, 1997. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Ravandi, A. Kuksis, L. Marai et al., “Isolation and identification of glycated aminophospholipids from red cells and plasma of diabetic blood,” FEBS Letters, vol. 381, no. 1-2, pp. 77–81, 1996. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Pamplona, M. J. Bellmunt, M. Portero, D. Riba, and J. Prat, “Chromatographic evidence for Amadori product formation in rat liver aminophospholipids,” Life Sciences, vol. 57, no. 9, pp. 873–879, 1995. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Bucala, Z. Makita, T. Koschinsky, A. Cerami, and H. Vlassara, “Lipid advanced glycosylation: pathway for lipid oxidation in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 14, pp. 6434–6438, 1993. View at Scopus
  23. C. M. Breitling-Utzmann, A. Unger, D. A. Friedl, and M. O. Lederer, “Identification and quantification of phosphatidylethanolamine-derived glucosylamines and aminoketoses from human erythrocytes—influence of glycation products on lipid peroxidation,” Archives of Biochemistry and Biophysics, vol. 391, no. 2, pp. 245–254, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Nakagawa, J. H. Oak, and T. Miyazawa, “Synthetically prepared Amadori-glycated phosphatidylethanolamine can trigger lipid peroxidation via free radical reactions,” FEBS Letters, vol. 481, no. 1, pp. 26–30, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. H. J. C. Chen and Y. C. Chen, “Analysis of glyoxal-induced DNA cross-links by capillary liquid chromatography nanospray ionization tandem mass spectrometry,” Chemical Research in Toxicology, vol. 22, no. 7, pp. 1334–1341, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. N. Murata-Kamiya, H. Kamiya, H. Kaji, and H. Kasai, “Glyoxal, a major product of DNA oxidation, induces mutations at G:C sites on a shuttle vector plasmid replicated in mammalian cells,” Nucleic Acids Research, vol. 25, no. 10, pp. 1897–1902, 1997. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Kasai, N. Iwamoto-Tanaka, and S. Fukada, “DNA modifications by the mutagen glyoxal: adduction to G and C, deamination of C and GC and GA cross-linking,” Carcinogenesis, vol. 19, no. 8, pp. 1459–1465, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Pischetsrieder, W. Seidel, G. Münch, and R. Schinzel, “N2-(1-carboxyethyl)deoxyguanosine, a nonenzymatic glycation adduct of DNA, induces single-strand breaks and increases mutation frequencies,” Biochemical and Biophysical Research Communications, vol. 264, no. 2, pp. 544–549, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. G. E. Wuenschell, D. Tamae, A. Cercillieux, R. Yamanaka, C. Yu, and J. Termini, “Mutagenic potential of DNA glycation: miscoding by (R)- and (S)-N 2-(1-carboxyethyl)2′-deoxyguanosine,” Biochemistry, vol. 49, no. 9, pp. 1814–1821, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. W. Seidel and M. Pischetsrieder, “DNA-glycation leads to depurination by the loss of N2-carboxyethylguanine in vitro,” Cellular and Molecular Biology, vol. 44, no. 7, pp. 1165–1170, 1998. View at Scopus
  31. N. Murata-Kamiya and H. Kamiya, “Methylglyoxal, and endogenous aldehyde, crosslinks DNA polymerase and the substrate DNA,” Nucleic Acids Research, vol. 29, no. 16, pp. 3433–3438, 2001. View at Scopus
  32. V. Breyer, M. Frischmann, C. Bidmon, A. Schemm, K. Schiebel, and M. Pischetsrieder, “Analysis and biological relevance of advanced glycation end-products of DNA in eukaryotic cells,” FEBS Journal, vol. 275, no. 5, pp. 914–925, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. S. F. Yan, R. Ramasamy, Y. Naka, and A. M. Schmidt, “Glycation, inflammation, and RAGE: a scaffold for the macrovascular complications of diabetes and beyond,” Circulation Research, vol. 93, no. 12, pp. 1159–1169, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. A. M. Schmidt, S. F. Yan, and R. Ramasamy, “Mechanisms of Disease: advanced glycation end-products and their receptor in inflammation and diabetes complications,” Nature Clinical Practice Endocrinology & Metabolism, vol. 4, no. 5, pp. 285–293, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. J. E. Hodge, “The Amadori rearrangement,” Advances in Carbohydrate Chemistry, vol. 10, pp. 169–205, 1955. View at Publisher · View at Google Scholar · View at Scopus
  36. T. Hayashi and M. Namiki, “Formation of 2-carbon sugar fragment at an early stage of the browning reaction of sugar with amine,” Agricultural and Biological Chemistry, vol. 44, no. 11, pp. 2575–2580, 1980.
  37. P. Thornalley, S. Wolff, J. Crabbe, and A. Stern, “The autoxidation of glyceraldehyde and other simple monosaccharides under physiological conditions catalysed by buffer ions,” Biochimica et Biophysica Acta, vol. 797, no. 2, pp. 276–287, 1984. View at Publisher · View at Google Scholar · View at Scopus
  38. S. A. Phillips and P. J. Thornalley, “The formation of methylglyoxal from triose phosphates. Investigation using a specific assay for methylglyoxal,” European Journal of Biochemistry, vol. 212, no. 1, pp. 101–105, 1993. View at Scopus
  39. J. P. Casazza, M. E. Felver, and R. L. Veech, “The metabolism of acetone in rat,” Journal of Biological Chemistry, vol. 259, no. 1, pp. 231–236, 1984. View at Scopus
  40. M. Ray and S. Ray, “L-Threonine dehydrogenase from goat liver. Feedback inhibition by methylglyoxal,” Journal of Biological Chemistry, vol. 260, no. 10, pp. 5913–5918, 1985. View at Scopus
  41. A. Loidl-Stahlhofen and G. Spiteller, “Aλπηα-hydroxyaldehydes, products of lipid peroxidation,” Biochimica et Biophysica Acta, vol. 1211, no. 2, pp. 156–160, 1994. View at Publisher · View at Google Scholar · View at Scopus
  42. P. J. Thornalley, A. Langborg, and H. S. Minhas, “Formation of glyoxal, methylglyoxal and 8-deoxyglucosone in the glycation of proteins by glucose,” Biochemical Journal, vol. 344, no. 1, pp. 109–116, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. J. W. Baynes, “Role of oxidative stress in development of complications in diabetes,” Diabetes, vol. 40, no. 4, pp. 405–412, 1991. View at Scopus
  44. P. E. Morgan, R. T. Dean, and M. J. Davies, “Inactivation of cellular enzymes by carbonyls and protein-bound glycation/glycoxidation products,” Archives of Biochemistry and Biophysics, vol. 403, no. 2, pp. 259–269, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Zeng and M. J. Davies, “Protein and low molecular mass thiols as targets and inhibitors of glycation reactions,” Chemical Research in Toxicology, vol. 19, no. 12, pp. 1668–1676, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. J. M. Aćimović, B. D. Stanimirović, N. Todorović, V. B. Jovanović, and L. M. Mandić, “Influence of the microenvironment of thiol groups in low molecular mass thiols and serum albumin on the reaction with methylglyoxal,” Chemico-Biological Interactions, vol. 188, no. 1, pp. 21–30, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. N. Rabbani and P. J. Thornalley, “Dicarbonyls linked to damage in the powerhouse: glycation of mitochondrial proteins and oxidative stress,” Biochemical Society Transactions, vol. 36, no. 5, pp. 1045–1050, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. N. Ahmed and P. J. Thornalley, “Quantitative screening of protein biomarkers of early glycation, advanced glycation, oxidation and nitrosation in cellular and extracellular proteins by tandem mass spectrometry multiple reaction monitoring,” Biochemical Society Transactions, vol. 31, no. 6, pp. 1417–1422, 2003. View at Scopus
  49. P. J. Thornalley, “The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life,” Biochemical Journal, vol. 269, no. 1, pp. 1–11, 1990. View at Scopus
  50. P. J. Thornalley, “Glyoxalase I—structure, function and a critical role in the enzymatic defence against glycation,” Biochemical Society Transactions, vol. 31, no. 6, pp. 1343–1348, 2003. View at Scopus
  51. G. Izaguirre, A. Kikonyogo, and R. Pietruszko, “Methylglyoxal as substrate and inhibitor of human aldehyde dehydrogenase: comparison of kinetic properties among the three isozymes,” Comparative Biochemistry and Physiology, vol. 119, no. 4, pp. 747–754, 1998. View at Publisher · View at Google Scholar · View at Scopus
  52. D. L. Vanderjagt, B. Robinson, K. K. Taylor, and L. A. Hunsaker, “Reduction of trioses by NADPH-dependent aldo-keto reductases. Aldose reductase, methylglyoxal, and diabetic complications,” Journal of Biological Chemistry, vol. 267, no. 7, pp. 4364–4369, 1992. View at Scopus
  53. A. Stolzing, R. Widmer, T. Jung, P. Voss, and T. Grune, “Degradation of glycated bovine serum albumin in microglial cells,” Free Radical Biology and Medicine, vol. 40, no. 6, pp. 1017–1027, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. D. Tamae, P. Lim, G. E. Wuenschell, and J. Termini, “Mutagenesis and repair induced by the DNA advanced glycation end product N 2-1-(carboxyethyl)-2′-deoxyguanosine in human cells,” Biochemistry, vol. 50, no. 12, pp. 2321–2329, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. N. Rabbani and P. J. Thornalley, “Glycation research in amino acids: a place to call home,” Amino Acids, vol. 42, no. 2, pp. 1087–1096, 2012. View at Publisher · View at Google Scholar · View at Scopus
  56. D. B. Sacks and R. R. Little, “HbA1c: how do we measure it and what does it mean?” Current Opinion in Endocrinology, Diabetes and Obesity, vol. 16, no. 2, pp. 113–118, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Rahbar, “The discovery of glycated hemoglobin: a major event in the study of nonenzymatic chemistry in biological systems,” Annals of the New York Academy of Sciences, vol. 1043, pp. 9–19, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. V. M. Monnier, D. R. Sell, and S. Genuth, “Glycation products as markers and predictors of the progression of diabetic complications,” Annals of the New York Academy of Sciences, vol. 1043, pp. 567–581, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. N. Verzijl, J. DeGroot, S. R. Thorpe et al., “Effect of collagen turnover on the accumulation of advanced glycation end products,” Journal of Biological Chemistry, vol. 275, no. 50, pp. 39027–39031, 2000. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Brownlee, “Negative consequences of glycation,” Metabolism, vol. 49, no. 2, pp. 9–13, 2000. View at Scopus
  61. H. Ha, S. J. Yoon, and K. H. Kim, “High glucose can induce lipid peroxidation in the isolated rat glomeruli,” Kidney International, vol. 46, no. 6, pp. 1620–1626, 1994. View at Scopus
  62. A. Mezzetti, F. Cipollone, and F. Cuccurullo, “Oxidative stress and cardiovascular complications in diabetes: isoprostanes as new markers on an old paradigm,” Cardiovascular Research, vol. 47, no. 3, pp. 475–488, 2000. View at Publisher · View at Google Scholar · View at Scopus
  63. T. Armeni, C. Pieri, M. Marra, F. Saccucci, and G. Principato, “Studies on the life prolonging effect of food restriction: glutathione levels and glyoxalase enzymes in rat liver,” Mechanisms of Ageing and Development, vol. 101, no. 1-2, pp. 101–110, 1998.
  64. P. J. Thornalley, “Modification of the glyoxalase system in human red blood cells by glucose in vitro,” Biochemical Journal, vol. 254, no. 3, pp. 751–755, 1988. View at Scopus
  65. R. Pamplona, M. Portero-Otin, M. J. Bellmunt, R. Gredilla, and G. Barja, “Erratum: aging increases Nepsilon-(carboxymethyl)lysine and caloric restriction decreases Nepsilon-(carboxymethyl)lysine and Nepsilon-(malondialdehyde)lysine in rat heart mitochondrial proteins (Free Radical Research, vol. 36, no.1, pp. 47–54, 2002),” Free Radical Research, vol. 36, no. 2, 2002. View at Scopus
  66. A. J. Lambert, M. Portero-Otin, R. Pamplona, and B. J. Merry, “Effect of ageing and caloric restriction on specific markers of protein oxidative damage and membrane peroxidizability in rat liver mitochondria,” Mechanisms of Ageing and Development, vol. 125, no. 8, pp. 529–538, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. J. J. Ochoa, R. Pamplona, M. C. Ramirez-Tortosa et al., “Age-related changes in brain mitochondrial DNA deletion and oxidative stress are differentially modulated by dietary fat type and coenzyme Q 10,” Free Radical Biology and Medicine, vol. 50, no. 9, pp. 1053–1064, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. V. Breyer, C. M. Becker, and M. Pischetsrieder, “Intracellular glycation of nuclear DNA, mitochondrial DNA, and cytosolic proteins during senescence-like growth arrest,” DNA and Cell Biology, vol. 30, no. 9, pp. 681–689, 2011.
  69. R. Pamplona, J. R. Requena, M. Portero-Otín, J. Prat, S. R. Thorpe, and M. J. Bellmunt, “Carboxymethylated phosphatidylethanolamine in mitochondrial membranes of mammals—evidence for intracellular lipid glycoxidation,” European Journal of Biochemistry, vol. 255, no. 3, pp. 685–689, 1998. View at Publisher · View at Google Scholar · View at Scopus
  70. J. W. Baynes, “The Maillard hypothesis on aging: time to focus on DNA,” Annals of the New York Academy of Sciences, vol. 959, pp. 360–367, 2002. View at Scopus
  71. M. G. Rosca, T. G. Mustata, M. T. Kinter et al., “Glycation of mitochondrial proteins from diabetic rat kidney is associated with excess superoxide formation,” American Journal of Physiology, vol. 289, no. 2, pp. F420–F430, 2005. View at Publisher · View at Google Scholar · View at Scopus
  72. O. Brouwers, P. M. Niessen, I. Ferreira et al., “Overexpression of glyoxalase-I reduces hyperglycemiainduced levels of advanced glycation end products and oxidative stress in diabetic rats,” Journal of Biological Chemistry, vol. 286, no. 2, pp. 1374–1380, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. L. Zhang, C. Yu, F. E. Vasquez et al., “Hyperglycemia alters the Schwann cell mitochondrial proteome and decreases coupled respiration in the absence of superoxide production,” Journal of Proteome Research, vol. 9, no. 1, pp. 458–471, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. H. Bugger, C. Dong, C. Riehle et al., “Tissue-specific remodeling of the mitochondrial proteome in type 1 diabetic akita mice,” Diabetes, vol. 58, no. 9, pp. 1986–1997, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. A. El-Osta, D. Brasacchio, D. Yao et al., “Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia,” Journal of Experimental Medicine, vol. 205, no. 10, pp. 2409–2417, 2008.
  76. M. G. Rosca, V. M. Monnier, L. I. Szweda, and M. F. Weiss, “Alterations in renal mitochondrial respiration in response to the reactive oxoaldehyde methylglyoxal,” American Journal of Physiology, vol. 283, no. 1, pp. F52–F59, 2002. View at Scopus
  77. S. Biswas, M. Ray, S. Misra, D. P. Dutta, and S. Ray, “Selective inhibition of mitochondrial respiration and glycolysis in human leukaemic leucocytes by methylglyoxal,” Biochemical Journal, vol. 323, no. 2, pp. 343–348, 1997. View at Scopus
  78. S. Ray, S. Dutta, J. Halder, and M. Ray, “Inhibition of electron flow through complex I of the mitochondrial respiratory chain of Ehrlich ascites carcinoma cells by methylglyoxal,” Biochemical Journal, vol. 303, no. 1, pp. 69–72, 1994. View at Scopus
  79. A. Ghosh, S. Bera, S. Ray, T. Banerjee, and M. Ray, “Methylglyoxal induces mitochondria-dependent apoptosis in sarcoma,” Biochemistry, vol. 76, no. 10, pp. 1164–1171, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. N. Shangari and P. J. O'Brien, “The cytotoxic mechanism of glyoxal involves oxidative stress,” Biochemical Pharmacology, vol. 68, no. 7, pp. 1433–1442, 2004. View at Publisher · View at Google Scholar · View at Scopus
  81. N. Shangari, R. Mehta, and P. J. O'Brien, “Hepatocyte susceptibility to glyoxal is dependent on cell thiamin content,” Chemico-Biological Interactions, vol. 165, no. 2, pp. 146–154, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. S. G. de Arriba, G. Stuchbury, J. Yarin, J. Burnell, C. Loske, and G. Münch, “Methylglyoxal impairs glucose metabolism and leads to energy depletion in neuronal cells—protection by carbonyl scavengers,” Neurobiology of Aging, vol. 28, no. 7, pp. 1044–1050, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. H. Wang, J. Liu, and L. Wu, “Methylglyoxal-induced mitochondrial dysfunction in vascular smooth muscle cells,” Biochemical Pharmacology, vol. 77, no. 11, pp. 1709–1716, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. P. J. Thornalley, “Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems—role in ageing and disease,” Drug Metabolism and Drug Interactions, vol. 23, no. 1-2, pp. 125–150, 2008. View at Scopus
  85. J. Zeng, R. A. Dunlop, K. J. Rodgers, and M. J. Davies, “Evidence for inactivation of cysteine proteases by reactive carbonyls via glycation of active site thiols,” Biochemical Journal, vol. 398, no. 2, pp. 197–206, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. A. Riboulet-Chavey, A. Pierron, I. Durand, J. Murdaca, J. Giudicelli, and E. van Obberghen, “Methylglyoxal impairs the insulin signaling pathways independently of the formation of intracellular reactive oxygen species,” Diabetes, vol. 55, no. 5, pp. 1289–1299, 2006. View at Publisher · View at Google Scholar · View at Scopus
  87. M. C. Lo, C. I. Lu, M. H. Chen, C. D. Chen, H. M. Lee, and S. H. Kao, “Glycoxidative stress-induced mitophagy modulates mitochondrial fates,” Annals of the New York Academy of Sciences, vol. 1201, pp. 1–7, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. H. Ma, S. Y. Li, P. Xu et al., “Advanced glycation endproduct (AGE) accumulation and AGE receptor (RAGE) up-regulation contribute to the onset of diabetic cardiomyopathy,” Journal of Cellular and Molecular Medicine, vol. 13, no. 8B, pp. 1751–1764, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. G. V. Sangle, S. K. R. Chowdhury, X. Xie, G. L. Stelmack, A. J. Halayko, and G. X. Shen, “Impairment of mitochondrial respiratory chain activity in aortic endothelial cells induced by glycated low-density lipoprotein,” Free Radical Biology and Medicine, vol. 48, no. 6, pp. 781–790, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. R. A. J. Smith, V. J. Adlam, F. H. Blaikie et al., “Mitochondria-targeted antioxidants in the treatment of disease,” Annals of the New York Academy of Sciences, vol. 1147, pp. 105–111, 2008. View at Publisher · View at Google Scholar · View at Scopus
  91. P. P. Hsu and D. M. Sabatini, “Cancer cell metabolism: warburg and beyond,” Cell, vol. 134, no. 5, pp. 703–707, 2008. View at Publisher · View at Google Scholar · View at Scopus
  92. J. W. J. van Heijst, H. W. M. Niessen, K. Hoekman, and C. G. Schalkwijk, “Advanced glycation end products in human cancer tissues: detection of Nε-(carboxymethyl)lysine and argpyrimidine,” Annals of the New York Academy of Sciences, vol. 1043, pp. 725–733, 2005. View at Publisher · View at Google Scholar · View at Scopus
  93. P. J. Thornalley and N. Rabbani, “Glyoxalase in tumourigenesis and multidrug resistance,” Seminars in Cell and Developmental Biology, vol. 22, no. 3, pp. 318–325, 2011. View at Publisher · View at Google Scholar · View at Scopus
  94. P. J. Thornalley, S. Waris, T. Fleming et al., “Imidazopurinones are markers of physiological genomic damage linked to DNA instability and glyoxalase 1-associated tumour multidrug resistance,” Nucleic Acids Research, vol. 38, no. 16, Article ID gkq306, pp. 5432–5442, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. D. J. Creighton, Z. B. Zheng, R. Holewinski, D. S. Hamilton, and J. L. Eiseman, “Glyoxalase I inhibitors in cancer chemotherapy,” Biochemical Society Transactions, vol. 31, no. 6, pp. 1378–1382, 2003. View at Scopus
  96. P. J. Thornalley, L. G. Edwards, Y. Kang et al., “Antitumour activity of S-p-bromobenzylglutathione cyclopentyl diester in vitro and in vivo. Inhibition of glyoxalase I and induction of apoptosis,” Biochemical Pharmacology, vol. 51, no. 10, pp. 1365–1372, 1996. View at Publisher · View at Google Scholar · View at Scopus
  97. P. J. Thornalley, “Protecting the genome: defence against nucleotide glycation and emerging role of glyoxalase I overexpression in multidrug resistance in cancer chemotherapy,” Biochemical Society Transactions, vol. 31, no. 6, pp. 1372–1377, 2003. View at Scopus
  98. H. K. Lee, I. A. Seo, D. J. Suh, H. J. Lee, and H. T. Park, “A novel mechanism of methylglyoxal cytotoxicity in neuroglial cells,” Journal of Neurochemistry, vol. 108, no. 1, pp. 273–284, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. G. Kroemer, “Mitochondria in cancer,” Oncogene, vol. 25, no. 34, pp. 4630–4632, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. D. C. Wallace, “Mitochondria and cancer: warburg addressed,” Cold Spring Harbor Symposia on Quantitative Biology, vol. 70, pp. 363–374, 2005. View at Publisher · View at Google Scholar · View at Scopus
  101. L. Formentini, I. Martínez-Reyes, and J. M. Cuezva, “The mitochondrial bioenergetic capacity of carcinomas,” IUBMB Life, vol. 62, no. 7, pp. 554–560, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. F. Orosz, J. Oláh, and J. Ovádi, “Triosephosphate isomerase deficiency: new insights into an enigmatic disease,” Biochimica et Biophysica Acta, vol. 1792, no. 12, pp. 1168–1174, 2009. View at Publisher · View at Google Scholar · View at Scopus
  103. N. Ahmed, S. Battah, N. Karachalias et al., “Increased formation of methylglyoxal and protein glycation, oxidation and nitrosation in triosephosphate isomerase deficiency,” Biochimica et Biophysica Acta, vol. 1639, no. 2, pp. 121–132, 2003. View at Publisher · View at Google Scholar · View at Scopus
  104. J. P. Gnerer, R. A. Kreber, and B. Ganetzky, “wasted away, a Drosophila mutation in triosephosphate isomerase, causes paralysis, neurodegeneration, and early death,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 41, pp. 14987–14993, 2006. View at Publisher · View at Google Scholar · View at Scopus
  105. F. X. Guix, G. Ill-Raga, R. Bravo et al., “Amyloid-dependent triosephosphate isomerase nitrotyrosination induces glycation and tau fibrillation,” Brain, vol. 132, no. 5, pp. 1335–1345, 2009. View at Publisher · View at Google Scholar · View at Scopus
  106. B. Kuhla, C. Haase, K. Flach, H. J. Lüth, T. Arendt, and G. Münch, “Effect of pseudophosphorylation and cross-linking by lipid peroxidation and advanced glycation end product precursors on tau aggregation and filament formation,” Journal of Biological Chemistry, vol. 282, no. 10, pp. 6984–6991, 2007. View at Publisher · View at Google Scholar · View at Scopus
  107. S. D. Yan, S. F. Yan, X. Chen et al., “Non-enzymatically glycated tau in Alzheimer's disease induces neuronal oxidant stress resulting in cytokine gene expression and release of amyloid β-peptide,” Nature Medicine, vol. 1, no. 7, pp. 693–699, 1995. View at Scopus
  108. B. Kuhla, K. Boeck, A. Schmidt et al., “Age- and stage-dependent glyoxalase I expression and its activity in normal and Alzheimer's disease brains,” Neurobiology of Aging, vol. 28, no. 1, pp. 29–41, 2007. View at Publisher · View at Google Scholar · View at Scopus
  109. R. N. Kalaria, “Neurodegenerative disease: diabetes, microvascular pathology and Alzheimer disease,” Nature Reviews Neurology, vol. 5, no. 6, pp. 305–306, 2009. View at Publisher · View at Google Scholar · View at Scopus
  110. G. Münch and M. Krautwald, “Advanced glycation end products as biomarkers and gerontotoxins—a basis to explore methylglyoxal-lowering agents for Alzheimer's disease?” Experimental Gerontology, vol. 45, no. 10, pp. 744–751, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. G. Fiskum, A. N. Murphy, and M. F. Beal, “Mitochondria in neurodegeneration: acute ischemia and chronic neurodegenerative diseases,” Journal of Cerebral Blood Flow and Metabolism, vol. 19, no. 4, pp. 351–369, 1999. View at Scopus
  112. A. N. Murphy, G. Fiskum, and M. F. Beal, “Mitochondria in neurodegeneration: bioenergetic function in cell life and death,” Journal of Cerebral Blood Flow and Metabolism, vol. 19, no. 3, pp. 231–245, 1999. View at Scopus
  113. M. F. Beal, “Mitochondria take center stage in aging and neurodegeneration,” Annals of Neurology, vol. 58, no. 4, pp. 495–505, 2005. View at Publisher · View at Google Scholar · View at Scopus
  114. R. Sultana, M. Perluigi, and D. A. Butterfield, “Oxidatively modified proteins in Alzheimer's disease (AD), mild cognitive impairment and animal models of AD: role of Abeta in pathogenesis,” Acta Neuropathologica, vol. 118, no. 1, pp. 131–150, 2009. View at Publisher · View at Google Scholar · View at Scopus
  115. A. Martínez, M. Portero-Otin, R. Pamplona, and I. Ferrer, “Protein targets of oxidative damage in human neurodegenerative diseases with abnormal protein aggregates,” Brain Pathology, vol. 20, no. 2, pp. 281–297, 2010. View at Publisher · View at Google Scholar · View at Scopus
  116. J. Yao, R. W. Irwin, L. Zhao, J. Nilsen, R. T. Hamilton, and R. D. Brinton, “Mitochondrial bioenergetic deficit precedes Alzheimer's pathology in female mouse model of Alzheimer's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 34, pp. 14670–14675, 2009. View at Publisher · View at Google Scholar · View at Scopus
  117. A. Dhar, K. Desai, J. Liu, and L. Wu, “Methylglyoxal, protein binding and biological samples: are we getting the true measure?” Journal of Chromatography B, vol. 877, no. 11-12, pp. 1093–1100, 2009. View at Publisher · View at Google Scholar · View at Scopus
  118. F. W. R. Chaplen, W. E. Fahl, and D. C. Cameron, “Evidence of high levels of methylglyoxal in cultured Chinese hamster ovary cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 10, pp. 5533–5538, 1998. View at Publisher · View at Google Scholar · View at Scopus