About this Journal Submit a Manuscript Table of Contents
International Journal of Cell Biology
Volume 2012 (2012), Article ID 931956, 10 pages
http://dx.doi.org/10.1155/2012/931956
Review Article

Forms, Crosstalks, and the Role of Phospholipid Biosynthesis in Autophagy

1Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada N1G 2W1
2Department of Human Health and Nutritional Sciences, University of Guelph, Animal Science and Nutrition Building, Room 346, Guelph, ON, Canada N1G 2W1

Received 1 August 2011; Revised 4 October 2011; Accepted 13 October 2011

Academic Editor: Liza Pon

Copyright © 2012 Leanne Pereira et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. M. Yin, W. X. Ding, and W. Gao, “Autophagy in the liver,” Hepatology, vol. 47, no. 5, pp. 1773–1784, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. J. F. Dice, “Chaperone-mediated autophagy,” Autophagy, vol. 3, no. 4, pp. 295–299, 2007.
  3. J. B. Kunzt, H. Schwarz, and A. Mayer, “Determination of four sequential stages during microautophagy in vitro,” Journal of Biological Chemistry, vol. 279, no. 11, pp. 9987–9996, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Glick, S. Barth, and K. F. Macleod, “Autophagy: cellular and molecular mechanisms,” Journal of Pathology, vol. 221, no. 1, pp. 3–12, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. P. A. Jaeger, F. Pickford, C. H. Sun, K. M. Lucin, E. Masliah, and T. Wyss-Coray, “Regulation of amyloid precursor protein processing by the beclin 1 complex,” PLoS ONE, vol. 5, no. 6, Article ID e11102, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. J. M. Rose, S. S. Novoselov, P. A. Robinson, and M. E. Cheetham, “Molecular chaperone-mediated rescue of mitophagy by a parkin RING1 domain mutant,” Human Molecular Genetics, vol. 20, no. 1, pp. 16–27, 2011.
  7. V. Deretic, “Links between autophagy, innate immunity, inflammation and Crohn's disease,” Digestive Diseases, vol. 27, no. 3, pp. 246–251, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Liu, M. Yang, R. Kang et al., “DAMP-mediated autophagy contributes to drug resistance,” Autophagy, vol. 7, no. 1, pp. 112–114, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. E. E. Essick and F. Sam, “Oxidative stress and autophagy in cardiac disease, neurological disorders, aging and cancer,” Oxidative Medicine and Cellular Longevity, vol. 3, no. 3, pp. 168–177, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Yang, P. Li, S. Fu, E. S. Calay, and G. S. Hotamisligil, “Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance,” Cell Metabolism, vol. 11, no. 6, pp. 467–478, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Morselli, M. C. Maiuri, M. Markaki et al., “The life span-prolonging effect of sirtuin-1 is mediated by autophagy,” Autophagy, vol. 6, no. 1, pp. 186–188, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. M. S. Goligorsky, “SIRTing out the link between autophagy and ageing,” Nephrology Dialysis Transplantation, vol. 25, no. 8, pp. 2434–2436, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. F. A. Agarraberes and J. F. Dice, “A molecular chaperone complex at the lysosomal membrane is required for protein translocation,” Journal of Cell Science, vol. 114, no. 13, pp. 2491–2499, 2001. View at Scopus
  14. A. M. Cuervo and J. F. Dice, “Regulation of lamp2a levels in the lysosomal membrane,” Traffic, vol. 1, no. 7, pp. 570–583, 2000. View at Scopus
  15. A. M. Cuervo and J. F. Dice, “A receptor for the selective uptake and degradation of proteins by lysosomes,” Science, vol. 273, no. 5274, pp. 501–503, 1996. View at Scopus
  16. K. Akasaki and H. Tsuji, “Purification and characterization of a soluble form of lysosome-associated membrane glycoprotein-2 (lamp-2) from rat liver lysosomal contents,” Biochemistry and Molecular Biology International, vol. 46, no. 1, pp. 197–206, 1998. View at Scopus
  17. A. M. Cuervo and J. F. Dice, “Unique properties of lamp2a compared to other lamp2 isoforms,” Journal of Cell Science, vol. 113, no. 24, pp. 4441–4450, 2000. View at Scopus
  18. U. Bandyopadhyay, S. Kaushik, L. Varticovski, and A. M. Cuervo, “The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane,” Molecular and Cellular Biology, vol. 28, no. 18, pp. 5747–5763, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. A. M. Cuervo, J. F. Dice, and E. Knecht, “A population of rat liver lysosomes responsible for the selective uptake and degradation of cytosolic proteins,” Journal of Biological Chemistry, vol. 272, no. 9, pp. 5606–5615, 1997. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Uttenweiler, H. Schwarz, and A. Mayer, “Microautophagic vacuole invagination requires calmodulin in a Ca2+-independent function,” Journal of Biological Chemistry, vol. 280, no. 39, pp. 33289–33297, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. X. Pan, P. Roberts, Y. Chen et al., “Nucleus-vacuole junctions in Saccharomyces cerevisiae are formed through the direct interaction of Vac8p with Nvj1p,” Molecular Biology of the Cell, vol. 11, no. 7, pp. 2445–2457, 2000. View at Scopus
  22. E. Kvam and D. S. Goldfarb, “Nucleus-vacuole junctions in yeast: anatomy of a membrane contact site,” Biochemical Society Transactions, vol. 34, no. 3, pp. 340–342, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Dawaliby and R. Mayer, “Microautophagy of the nucleus coincides with a vacuolar diffusion barrier at nuclear-vacuolar junctions,” Molecular Biology of the Cell, vol. 21, no. 23, pp. 4173–4183, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Kvam and D. S. Goldfarb, “Nvj1p is the outer-nuclear-membrane receptor for oxysterol-binding protein homolog Osh1p in Saccharomyces cerevisiae,” Journal of Cell Science, vol. 117, no. 21, pp. 4959–4968, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Krick, Y. Muehe, T. Prick et al., “Piecemeal microautophagy of the nucleus requires the core macroautophagy genes,” Molecular Biology of the Cell, vol. 19, no. 10, pp. 4492–4505, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Sahu, S. Kaushik, C. C. Clement et al., “Microautophagy of cytosolic proteins by late endosomes,” Developmental Cell, vol. 20, no. 1, pp. 131–139, 2011. View at Publisher · View at Google Scholar
  27. T. Yeung, G. E. Gilbert, J. Shi, J. Silvius, A. Kapus, and S. Grinstein, “Membrane phosphatidylserine regulates surface charge and protein localization,” Science, vol. 319, no. 5860, pp. 210–213, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Gao and C. A. Kaiser, “A conserved GTPase-containing complex is required for intracellular sorting of the general amino-acid permease in yeast,” Nature Cell Biology, vol. 8, no. 7, pp. 657–667, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. X. D. Gao, J. Wang, S. Keppler-Ross, and N. Dean, “ERS1 encodes a functional homologue of the human lysosomal cystine transporter,” FEBS Journal, vol. 272, no. 10, pp. 2497–2511, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Binda, M. P. Péli-Gulli, G. Bonfils et al., “The vam6 GEF controls TORC1 by activating the EGO complex,” Molecular Cell, vol. 35, no. 5, pp. 563–573, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Li and K. L. Guan, “Amino acid signaling to TOR activation: vam6 functioning as a gtr1 GEF,” Molecular Cell, vol. 35, no. 5, pp. 543–545, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. F. Dubouloz, O. Deloche, V. Wanke, E. Cameroni, and C. De Virgilio, “The TOR and EGO protein complexes orchestrate microautophagy in yeast,” Molecular Cell, vol. 19, no. 1, pp. 15–26, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. E. Itakura and N. Mizushima, “Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins,” Autophagy, vol. 6, no. 6, pp. 764–776, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Noda, K. Matsunaga, and T. Yoshimori, “Atg14L recruits PtdIns 3-kinase to the ER for autophagosome formation,” Autophagy, vol. 7, no. 4, pp. 438–439, 2011. View at Publisher · View at Google Scholar
  35. M. Hayashi-Nishino, N. Fujita, T. Noda, A. Yamaguchi, T. Yoshimori, and A. Yamamoto, “A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation,” Nature Cell Biology, vol. 11, no. 12, pp. 1433–1437, 2009. View at Scopus
  36. N. Mizushima, “The role of the Atg1/ULK1 complex in autophagy regulation,” Current Opinion in Cell Biology, vol. 22, no. 2, pp. 132–139, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. H. E. J. Polson, J. de Lartigue, D. J. Rigden et al., “Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation,” Autophagy, vol. 6, no. 4, pp. 506–522, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. N. Fujita, T. Itoh, H. Omori, M. Fukuda, T. Noda, and T. Yoshimori, “The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy,” Molecular Biology of the Cell, vol. 19, no. 5, pp. 2092–2100, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Matsushita, N. N. Suzuki, K. Obara, Y. Fujioka, Y. Ohsumi, and F. Inagaki, “Structure of Atg5·Atg16, a complex essential for autophagy,” Journal of Biological Chemistry, vol. 282, no. 9, pp. 6763–6772, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. K. Matsunaga, T. Saitoh, K. Tabata et al., “Two beclin 1-binding proteins, Atg14L and rubicon, reciprocally regulate autophagy at different stages,” Nature Cell Biology, vol. 11, no. 4, pp. 385–396, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Kaushik, A. C. Massey, N. Mizushima, and A. M. Cuervo, “Constitutive activation of chaperone-mediated autophagy in cells with impaired macroautophagy,” Molecular Biology of the Cell, vol. 19, no. 5, pp. 2179–2192, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. A. C. Massey, S. Kaushik, G. Sovak, R. Kiffin, and A. M. Cuervo, “Consequences of the selective blockage of chaperone-mediated autophagy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 15, pp. 5805–5810, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. K. Emoto, T. Kobayashi, A. Yamaji et al., “Redistribution of phosphatidylethanolamine at the cleavage furrow of dividing cells during cytokinesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 23, pp. 12867–12872, 1996. View at Publisher · View at Google Scholar · View at Scopus
  44. K. Emoto, N. Toyama-Sorimachi, H. Karasuyama, K. Inoue, and M. Umeda, “Exposure of phosphatidylethanolamine on the surface of apoptotic cells,” Experimental Cell Research, vol. 232, no. 2, pp. 430–434, 1997. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Sessions and A. F. Horwitz, “Myoblast aminophospholipid asymmetry differs from that of fibroblasts,” FEBS Letters, vol. 134, no. 1, pp. 75–78, 1981. View at Scopus
  46. P. Williamson and R. A. Schlegel, “Back and forth: the regulation and function of transbilayer phospholipid movement in eukaryotic cells,” Molecular Membrane Biology, vol. 11, no. 4, pp. 199–216, 1994. View at Scopus
  47. A. Marconescu and P. E. Thorpe, “Coincident exposure of phosphatidylethanolamine and anionic phospholipids on the surface of irradiated cells,” Biochimica et Biophysica Acta, vol. 1778, no. 10, pp. 2217–2224, 2008. View at Publisher · View at Google Scholar
  48. V. A. Fadok, D. R. Voelker, P. A. Campbell, J. J. Cohen, D. L. Bratton, and P. M. Henson, “Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages,” Journal of Immunology, vol. 148, no. 7, pp. 2207–2216, 1992. View at Scopus
  49. K. Emoto, H. Inadome, Y. Kanaho, S. Narumiya, and M. Umeda, “Local change in phospholipid composition at the cleavage furrow is essential for completion of cytokinesis,” Journal of Biological Chemistry, vol. 280, no. 45, pp. 37901–37907, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. V. A. Fadok, D. L. Bratton, and P. M. Henson, “Phagocyte receptors for apoptotic cells: recognition, uptake, and consequences,” Journal of Clinical Investigation, vol. 108, no. 7, pp. 957–962, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. J. H. Stafford and P. E. Thorpe, “Increased exposure of phosphatidylethanolamine on the surface of tumor vascular endothelium,” Neoplasia, vol. 13, no. 4, pp. 299–308, 2011. View at Publisher · View at Google Scholar
  52. S. A. Tooze and T. Yoshimori, “The origin of the autophagosomal membrane,” Nature Cell Biology, vol. 12, no. 9, pp. 831–835, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. P. Ylä-Anttila, H. Vihinen, E. Jokitalo, and E. L. Eskelinen, “3D tomography reveals connections between the phagophore and endoplasmic reticulum,” Autophagy, vol. 5, no. 8, pp. 1180–1185, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Luo, Q. Chen, E. Cebollero, and D. Xing, “Mitochondria: one of the origins for autophagosomal membranes?” Mitochondrion, vol. 9, no. 4, pp. 227–231, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. Y. Ohashi and S. Munro, “Membrane delivery to the yeast autophagosome from the golgi-endosomal system,” Molecular Biology of the Cell, vol. 21, no. 22, pp. 3998–4008, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. W. A. Dunn Jr., “Studies on the mechanisms of autophagy: formation of the autophagic vacuole,” Journal of Cell Biology, vol. 110, no. 6, pp. 1923–1933, 1990. View at Publisher · View at Google Scholar · View at Scopus
  57. K. Furuno, T. Ishikawa, K. Akasaki et al., “Immunocytochemical study of the surrounding envelope of autophagic vacuoles in cultured rat hepatocytes,” Experimental Cell Research, vol. 189, no. 2, pp. 261–268, 1990. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Yamamoto, R. Masaki, and Y. Tashiro, “Characterization of the isolation membranes and the limiting membranes of autophagosomes in rat hepatocytes by lectin cytochemistry,” Journal of Histochemistry and Cytochemistry, vol. 38, no. 4, pp. 573–580, 1990. View at Scopus
  59. A. Yamamoto, R. Masaki, Y. Fukui, and Y. Tashiro, “Absence of cytochrome P-450 and presence of autolysosomal membrane antigens on the isolation membranes and autophagosomal membranes in rat hepatocytes,” Journal of Histochemistry and Cytochemistry, vol. 38, no. 11, pp. 1571–1581, 1990. View at Scopus
  60. A. L. Kovács, Z. Pálfia, G. Réz, T. Vellai, and J. Kovács, “Sequestration revisited: integrating traditional electron microscopy, de novo assembly and new results,” Autophagy, vol. 3, no. 6, pp. 655–662, 2007. View at Scopus
  61. M. Baba, M. Osumi, and Y. Ohsumi, “Anaysis of the membrane structures involved in autophagy in yeast by freeze-replica method,” Cell Structure and Function, vol. 20, no. 6, pp. 465–471, 1995.
  62. M. Fengsrud, E. S. Erichsen, T. O. Berg, C. Raiborg, and P. O. Seglen, “Ultrastructural characterization of the delimiting membranes of isolated autophagosomes and amphisomes by freeze-fracture electron microscopy,” European Journal of Cell Biology, vol. 79, no. 12, pp. 871–882, 2000. View at Scopus
  63. A. L. Kovács, G. Réz, Z. Pálfia, and J. Kovács, “Autophagy in the epithelial cells of murine seminal vesicle in vitro: formation of large sheets of nascent isolation membranes, sequestration of the nucleus and inhibition by wortmannin and 3-methyladenine,” Cell and Tissue Research, vol. 302, no. 2, pp. 253–261, 2000.
  64. J. P. Girardi, L. Pereira, and M. Bakovic, “De novo synthesis of phospholipids is coupled with autophagosome formation,” Medical Hypotheses, vol. 77, no. 6, pp. 1083–1087, 2011. View at Publisher · View at Google Scholar
  65. M. A. Miller and C. Kent, “Characterization of the pathways for phosphatidylethanolamine biosynthesis in Chinese hamster ovary mutant and parental cell lines,” Journal of Biological Chemistry, vol. 261, no. 21, pp. 9753–9761, 1986. View at Scopus
  66. D. R. Voelker, “Phosphatidylserine decarboxylase,” Biochimica et Biophysica Acta, vol. 1348, no. 1-2, pp. 236–244, 1997. View at Publisher · View at Google Scholar · View at Scopus
  67. D. R. Voelker, “Phosphatidylserine functions as the major precursor of phosphatidylethanolamine in cultured BHK-21 cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 81, no. 9, pp. 2669–2673, 1984. View at Scopus
  68. M. Bakovic, K. Waite, W. Tang, I. Tabas, and D. E. Vance, “Transcriptional activation of the murine CTP: phosphocholine cytidylyltransferase gene (Ctpct): combined action of upstream stimulatory and inhibitory cis-acting elements,” Biochimica et Biophysica Acta, vol. 1438, no. 1, pp. 147–165, 1999. View at Publisher · View at Google Scholar
  69. M. Bakovic, K. Waite, and D. E. Vance, “Oncogenic Ha-Ras transformation modulates the transcription of the CTP: phosphocholine cytidylyltransferase α gene via p42/44MAPK and transcription factor Sp3,” Journal of Biological Chemistry, vol. 278, no. 17, pp. 14753–14761, 2003. View at Publisher · View at Google Scholar · View at Scopus
  70. L. S. Golfman, M. Bakovic, and D. E. Vance, “Transcription of the CTP: phosphocholine cytidylyltransferase α gene is enhanced during the S phase of the cell cycle,” Journal of Biological Chemistry, vol. 276, no. 47, pp. 43688–43692, 2001. View at Publisher · View at Google Scholar · View at Scopus
  71. J. N. Kanfer, “The base exchange enzymes and phospholipase D of mammalian tissue,” Canadian Journal of Biochemistry, vol. 58, no. 12, pp. 1370–1380, 1980. View at Scopus
  72. M. Bakovic, M. D. Fullerton, and V. Michel, “Metabolic and molecular aspects of ethanolamine phospholipid biosynthesis: the role of CTP: phosphoethanolamine cytidylyltransferase (Pcyt2),” Biochemistry and Cell Biology, vol. 85, no. 3, pp. 283–300, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. D. E. Vance and J. E. Vance, “Physiological consequences of disruption of mammalian phospholipid biosynthetic genes,” Journal of Lipid Research, vol. 50, pp. S132–S137, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. Z. Li and D. Vance, “Thematic review series: glycerolipids, phosphatidylcholine and choline homeostatis,” Journal of Biological Chemistry, vol. 283, pp. 202–212, 2008.
  75. D. J. Shields, R. Lehner, L. B. Agellon, and D. E. Vance, “Membrane topography of human phosphatidylethanolamine N-methyltransferase,” Journal of Biological Chemistry, vol. 278, no. 5, pp. 2956–2962, 2003. View at Publisher · View at Google Scholar · View at Scopus
  76. J. E. Vance, “Newly made phosphatidylserine and phosphatidylethanolamine are preferentially translocated between rat liver mitochondria and endoplasmic reticulum,” Journal of Biological Chemistry, vol. 266, no. 1, pp. 89–97, 1991. View at Scopus
  77. M. E. Gardocki, N. Jani, and J. M. Lopes, “Phosphatidylinositol biosynthesis: biochemistry and regulation,” Biochimica et Biophysica Acta, vol. 1735, no. 2, pp. 89–100, 2005. View at Publisher · View at Google Scholar · View at Scopus
  78. B. Antonsson, “Phosphatidylinositol synthase from mammalian tissues,” Biochimica et Biophysica Acta, vol. 1348, no. 1-2, pp. 179–186, 1997. View at Publisher · View at Google Scholar · View at Scopus
  79. A. J. Kinney and G. M. Carman, “Enzymes of phosphoinositide synthesis in secretory vesicles destined for the plasma membrane in Saccharomyces cerevisiae,” Journal of Bacteriology, vol. 172, no. 7, pp. 4115–4117, 1990. View at Scopus
  80. J. E. Vance, “The use of newly synthesized phospholipids for assembly into secreted hepatic lipoproteins,” Biochimica et Biophysica Acta, vol. 1006, no. 1, pp. 59–69, 1989. View at Scopus
  81. G. Hörl, A. Wagner, L. K. Cole et al., “Sequential synthesis and methylation of phosphatidylethanolamine promote lipid droplet biosynthesis and stability in tissue culture and in vivo,” Journal of Biological Chemistry, vol. 286, no. 19, pp. 17338–17350, 2011. View at Publisher · View at Google Scholar
  82. E. L. Axe, S. A. Walker, M. Manifava et al., “Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum,” Journal of Cell Biology, vol. 182, no. 4, pp. 685–701, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. M. Hayashi-Nishino, N. Fujita, T. Noda, A. Yamaguchi, T. Yoshimori, and A. Yamamoto, “Electron tomography reveals the endoplasmic reticulum as a membrane source for autophagosome formation,” Autophagy, vol. 6, no. 2, pp. 301–303, 2010. View at Publisher · View at Google Scholar · View at Scopus