About this Journal Submit a Manuscript Table of Contents
International Journal of Carbohydrate Chemistry
Volume 2011 (2011), Article ID 312539, 12 pages
http://dx.doi.org/10.1155/2011/312539
Review Article

Quaternary Salts of Chitosan: History, Antimicrobial Features, and Prospects

1Embrapa Instrumentação Agropecuária, Brazilian Agricultural Research Corporation, Rua XV de Novembro, 1452, P.O. Box 741, 13560-970 São Carlos, SP, Brazil
2Instituto de Química de São Carlos, USP, Avenida Trabalhador São-Carlense, 400, P.O. Box 780, 13560-970, São Carlos, SP, Brazil

Received 28 January 2011; Revised 14 April 2011; Accepted 27 May 2011

Academic Editor: José das Neves

Copyright © 2011 Douglas de Britto et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Recently, increasing attention has been paid to water-soluble derivatives of chitosan at its applications. The chemical characteristics and the antimicrobial properties of these salts can play significant role in pharmacological and food areas mainly as carriers for drug delivery systems and as antimicrobial packaging materials. In the current paper, a historical sequence of the main preparative methods, physical chemistry aspects, and antimicrobial activity of chitosan quaternized derivatives are presented and briefly discussed. In general, the results indicated that the quaternary derivatives had better inhibitory effects than the unmodified chitosan.

1. Background

One of the first reports about methylation process of chitosan was presented by Wolfrom et al. in their study on carboxyl-reduced heparin published in 1963 [1]. Despite employing a very methylant agent (dimethylsulfate), only a 3,6-O-methylated product was claimed by the authors. In the seventies, Nudga et al. studied a series of N-alkylated chitosans [24] and described the preparation of a derivative with a 78% of quaternary amino sites. Then, Muzzarelli and Tanfani, in 1985 [5], prepared N-trimethyl chitosan iodide in a controlled three-step reaction: (a) started by a preparation of an N-alkyl chitosan via reductive alkylation, in which the chitosan amino groups react with appropriated aldehyde, generating a Schiff’s base; (b) this compound is treated with a reducing agent, to yield the corresponding N-alkyl chitosan (c) then an overmethylation with an alkyl halide is carried out, generating, finally, the quaternary salt. With these sequences Muzzarelli and Tanfani obtained N,N,N-trimethyl chitosan (TMC) by reacting N-permethylated chitosan, which was previously prepared by treating chitosan with formaldehyde followed by reduction with sodium borohydrade and trimethylation with methyl iodide. Although, according to the authors, the product 60% trimethylated was not water soluble and characterized only with 13C NMR and elemental analysis. This effort was made, aiming its application as antibiotic and ion exchange material.

In the following year, Domard et al. [6], also reacting chitosan with methyl iodide, gave an important contribution mainly on the role of the reagents in the quaternization. They established that the combination of N-methyl-2-pyrrolidone (NMP) and NaOH favors the quaternization better than sole addition of organic bases, for example, triethylamine. In order to understand the chemical structure of the TMC, several papers were published, emphasizing the features and signal changes as observed by nuclear magnetic resonance spectroscopy [7, 8]. At this time, three important branches of application for TMC have emerged, to be known: (i) as gene delivery tool; (ii) as absorption enhancer for hydrophilic drugs transport across epithelium (iii) for cosmetics applications.

The first topic started back in 1996-97 by the publications from Murata et al. [9, 10] who measured the cytotoxic activity and the formation of polyelectrolyte complex with DNA. Those works were based on the derivative synthesis as proposed by Domard et al. [6]. After a long period of latency regarding this specific application, in 2005 Kean et al. [11] returned to this area, publishing results of a study about the toxicity and transfection efficiency of TMC derivatives with respect to the degree of trimethylation. After that, several other papers have been published in the field, highlighting the polyelectrolyte complex (PEC) formation [12]; aspects of nanoparticles cytotoxicity [13]; structure-activity relationship determination [14, 15]; reviews of use of chitosan derivatives as functional polymers [1618].

The second issue began with Kotze et al. [19] in 1997 by reporting that TMC, as drug excipient, had a superior efficiency as absorption enhancer for hydrophilic drugs across intestinal epithelia than the chitosan itself. This potential for pharmacological applications increased considerably the interest for this polyelectrolyte. Aiming at better efficiency, the synthetic path was deeply studied, allowing, consequently, a better comprehension of its chemical structure [2030]. The absorption enhancer property of the TMC did not confine only to intestinal epithelia but for other epithelial tissues. It showed also to be efficient, as documented for buccal mucosa [31, 32], mammalian airway [33], rabbit cornea [34], and derma [35]. Despite the huge amount of publications and data on chitosan quaternization, the synthetic route had remained almost the same, generally with a reaction involving a suspension of NMP and methyl iodide. Furthermore, these studies also demonstrate (see, e.g. [25, 29]) that strong inorganic bases, such as NaOH, are more efficient for quaternization than organic ones. As TMC gained attention for use in oral drug delivery, some reviews on the subject have appeared [16, 28, 3638].

The last application can be related to the publication of Lang et al. [39] regarding the synthesis of quaternary salts for use as additive in cosmetic products. The authors proposed alternative synthetic routes as well as new applications for the derivative. One of the suggested methodologies was the covalent addition of a substituent containing a quaternary ammonium group. It could be achieved by reacting chitosan with a quaternary ammonium epoxide, such as glycidyl-trimethylammonium chloride. The main focus was the cosmetic market, as evidenced by several patents refereed in that paper.

More recently, an important branch of application for chitosan quaternary salt related to antimicrobial action has gained attention. It started by Kim et al. [40] testing several chitosan quaternary salt against Staphylococcus aureus. The synthetic path was based on that proposed by Muzzarelli and Tanfani [5]. In this way, the authors described the reaction of chitosan with formaldehyde, butyraldehyde, n-octylaldehyde, and n-dodecylaldehyde, treated the resulting Schiff’s bases with sodium borohydrade, obtaining the quaternary salts via methyl iodide synthetic route. In fact, the antibacterial activity of the prepared salts was higher than that found for chitosan itself and increased with increasing chain length of the alkyl substituent. Following this line, in 2001, Jia et al. [41], also prepared several quaternary chitosan salts and tested against gram-negative bacteria Escherichia coli. It was seen that these salts exhibited higher in vitro activity against E. coli than chitosan, mainly in acid medium. Particularly, other combinations including alkyl, aryl moieties and carboxymethylation in chitosan quaternary salt also showed to be efficient against gram-negative and gram-positive bacteria [4245].

With respect to its physical and chemical properties, works have reported the chemoselectivity with methyl iodide [46], the thermal degradation [47], the viscosity behavior [48], new synthetic route via dimethylsulfate [49, 50], the degree of quaternization via solid state 13C NMR [51], and procedures for preventing the occurrence of O-methylation [52, 53].

Finally, the utmost research is the synthesis and application of chitosan quaternary salts as nanoparticles. It started from the work of Xu et al. [54], who reported the preparation of quaternary salt via reaction between glycidyl-trimethyl-ammonium chloride and chitosan and the formation of nanoparticles based on ionic gelation process with sodium tripolyphosphate (TPP). They described nanoparticles in the size range of 110–180 nm with drug entrapment efficiency up to 90%, for evaluation of bovine serum albumin as a model drug. Several other important applications have emerged for TMC nanoparticles obtained by ionic gelation with TPP, such as nasal [5557] and oral [58] vaccine delivery system; protein carrier [5961], and insulin releaser [62]. Then, several methods for the preparation and applications of TMC were reported, as: (i) by emulsion-diffusion-evaporation technique for gene transfer process [63]; (ii) by electrostatic self-assembling between TMC and insulin [64, 65] and cysteine [66], for controlled release applications; (iii) synthesis and characterization of gold, silver, and platinum TMC nanoparticles [67]; (iv) via ionotropic gelation with alginate for drug delivery [61, 6870]; (v) alkyl chitosan salts micelles (or nanomicelles) formed via ultrasonication in aqueous media for nutraceuticals and functional foods [71, 72]; (vi) via ionotropic gelation with poly( -glutamic acid) for insulin controlled transport [73].

In spite of this vast literature on production and applications of TMC nanoparticles for delivery system, it is reported that TMC nanoparticles loaded with insulin were found to be less effective in permeating epithelial cells than the corresponding TMC in its free soluble form (not as nanoparticles) [74]. The reduced available amount of positive charge at the surface of the nanoparticles was claimed as responsible for this lower performance. Moreover, an important finding in that research was the strongest ability of TMC in opening the tight junction in comparison with the parent chitosan and other quaternary salts, for example, dimethylethyl chitosan and diethylmethyl chitosan.

2. Physical-Chemical Aspects

Chitin and chitosan are β(1→4) glycans whose chains are formed, respectively, by 2-acetamide-2-deoxy-D-glucopyranose and 2-amino-2-deoxy-D-glucopyranose units. Chitosan is generally prepared by the deacetylation of chitin, and, in fact, none of them can be considered a homopolymer. Chitin, regularly isolated from the carapaces of marine animals such as crabs and shrimps, contains some fraction (approximately 5–10%) of 2-amino-2-deoxy-D-glucopyranose units. Completely deacetylated chitosan is, however, rarely prepared due to the simultaneous occurrence of extensive depolymerization.

The chitosan’s amino group behaves as nucleophile that bonds to and yields products with a variety of electrophiles, so the methylation reaction proceeds via electrophilic substitution of nitrogen. The most common electrophiles already reported on chitosan methylation are alkyl halides (R–Cδ+H2–X) and dialkyl sulfate (R–Cδ+H2–SO4Cδ+H2–R). In both cases the reaction proceeds presumably by a mechanism and liberates H+ as a by-product. However, low pH values affect the forward reaction in two aspects: first, decreasing the substitution degree and, second, promoting the glycoside bond cleavage. The first event occurs when H+ is captured by the unshared electron pair of the nitrogen, stopping the reaction at the amino site. The last event causes chain depolymerization, yielding low molecular weight derivatives [48]. These problems can be overcome by a proper addition of strong bases [6, 7, 25]. On the other hand, the added OH- base is also a nucleophile that can react with the electrophile and produces alcohols. It seems that the slow addition of the strong base during the course of the reaction is the best way to avoid this problem.

The main parameters that characterize a chitosan’s derivative are its average degree of quaternization, , and molecular weight. The is usually determined by 1H NMR spectroscopy [22, 24, 46], although potentiometric and conductimetric methods have also been proposed [41, 46, 48]. As the reaction is conducted in a heterogeneous medium, monomethylated, dimethylated, and trimethylated species are generated randomly. This has complexed and even leaded to misinterpretation of the 1H NMR spectrum. Although, solid state CP-MAS 13C NMR technique has been emerged as an alternative method to calculate TMC’s [51]. Despite the usefulness of FTIR spectroscopy in determining the degree of acetylation of chitosan [75] on TMC characterization, it has been limited to qualitative analysis [40, 41, 44, 47, 49]. Regarding the molecular weight, comparative viscosimetric studies have been adopted [25], but, as increasing the applicability of such derivatives, absolute method based on Gel Permeation Chromatograph (GPC) has given precise data [15, 27, 42, 7682]. In the following, the main features of these techniques in TMC characterization are discussed.

Sample preparation for FTIR spectroscopy can be accomplished by KBr pellets or casting thin film on acrylic dish. The last method, however, makes use of the excellent film ability of such polymer and gives good spectra with low noise. Two main differences between the parent chitosan and TMC FTIR occur in the interval of 1700–1200 cm−1 (see Figure 1). First, the TMC’s spectra show a band near 1475 cm−1, “A”, correspondent to asymmetrical stretching of C–H in the methyl groups. This band is absent in the spectrum of the starting chitosan. Second, the band assigned to angular deformation of N–H in amino groups (near 1590 cm−1, “B”) is reduced for the derivatives, and, generally, is overlaid by the signal at 1630 cm−1 (carbonyl stretching of acetamide moiety, “C”). The major problem in using FTIR in quantitative analysis may be related to lack of proportionality between the signal “A” and the . As seen in Figure 1, the two TMC derivatives have different but the intensity of the signal “A” is equal in two samples [49].

312539.fig.001
Figure 1: Typical FTIR spectra of chitosan and TMC.

The 1H NMR spectroscopy is also a useful tool in characterization and has been largely used in calculation. Some misinterpretation regarding peaks assignments was raised before [8] but corrected in a subsequent paper [22]. Currently, the peaks assignments shown in Figure 2 are accepted as the correct one. Although, for certain applications, not only the is important, but also the degree of dimethylation and O-methylation as well. For this knowledge, 1H NMR spectroscopy has been used [15, 77]. 1H NMR spectroscopy was also used as quantitative technique in the characterization of O-methyl free TMC derivatives [46, 52, 78, 79]. The strategy for such attempt was based on the method described by Muzzarelli and Tanfani [5] with some modification. According to the authors, the two-step reaction (dimethylation with formic acid-formaldehyde followed by a mild methylation with iodomethane without addition of strong OH base) not only avoided the O-methylation reaction but also prevented the chain scission. However, some limitations of this technique in substitution calculation were discussed recently [51] and are related mainly to the low intensity of the proton linked to C1 of the glycoside ring, generally took as reference signal [52]. This can induce a super estimation of such parameters.

312539.fig.002
Figure 2: Typical 1H NMR spectrum of TMC. For chemical structure and legends, see Figure 3.

The solid-state CP-MAS 13C NMR spectroscopy, which combines the techniques of proton dipolar decoupling (DD), magic angle spinning (MAS), and crosspolarization (CP), has emerged as an alternative tool in TMC characterization and calculation [4951]. A methylated chitosan may show the following evidences (Figure 3): (a) 106.1 ppm, attributed to C1 signal of the glycoside ring when there is no substitution on the near amino group; (b) 100.4 ppm, attributed to C1 signal when there is substitution on the near amino group; (c) 37.9 ppm, attributed to carbon of methyl groups in N-monomethylated site; (d) 48.1 ppm, correspondent to carbon of methyl groups in N,N-dimethylated site; (e) 56.4 ppm, related to the carbon of methyl groups in N,N,N-trimethylated site (f) 68.5 ppm, correspondent to the carbon of methyl groups in O-methylated site. In fact, the signals labeled as “1u”, “1s”, and “T” showed reasonable proportionality according to degree of substitution [82]. Such technique was also useful to characterize other chitosan quaternary salts, for example, N-butyl-N,N-dimethylchitosan, N-octyl-N,N-dimethylchitosan, and N-dodecyl-N,N-dimethylchitosan [50].

312539.fig.003
Figure 3: Typical solid state CP-MAS 13C NMR spectrum of TMC. The labels stand for  1u: C1 (amino unsubstituted); 1s : C1 (amino substituted); O : O-methylated; T : N,N,N-trimethylated; D : N,N-dimethylated M : N-monomethylated signals.

Degradations which occur during the reaction can be assessed by measuring the intrinsic viscosity, [ ], since it is related to the average molecular weight by the Mark-Houwink equation, [ ] = . The drop in [ ] can be of 90% in comparison with parent chitosan, depending on the reaction condition [25], until of only 5% [8]. But, in most of the cases, intermediate values within this range are common [27, 48, 49, 76, 77, 82]. Absolute molecular weight technique (GPC) also shows such depolymerization, situating Mw near 1.0–3.0 g/mol ×105 [27, 76, 77, 82]. In fact, a plot of log[ ] versus log showed values of 0.39 and 2.14 × for the empirics Mark-Houwink’s parameters and , respectively [77]. However, instead of a drop, Verheul et al. [52] found a slight increase in , rising of 42 kDa up to 84 kDa, which was attributed to limited or even absence of chain scission during reaction by the method of O-methylation free.

The usefulness of viscosity data is not limited to molecular weight estimation, but it spread light on chain conformation as well. Chain conformation, in its turn, can help to understand the antimicrobial activity of the polymer. Particularly in the case of cationic polyelectrolyte, as chitosan and its quaternary salts, the viscosity, in aqueous solution free of added electrolytes, shows an apparent paradoxical behavior called polyelectrolytic effect in which the viscosity increase, as the dilution increase, (Figure 4). The charged groups repeal each other, causing chain expansion, increasing the hydrodynamic volume and, consequently, increasing the viscosity. In the presence of added electrolytes, the charges will be screened, and, consequently, the polyelectrolyte chain will adopt a coiled conformation.

312539.fig.004
Figure 4: Illustration of the different chain conformations of a polyelectrolyte in function of the concentration and ionic strength.

TMC itself shows the polyelectrolyte effect (Figure 5) and the viscosimetric study of the interaction of TMC with other charged species like surfactant (Figure 5), anionic polyelectrolyte, and other complexant polymers can explain the mode of action between the quaternary salt and the cell wall of a microorganism. Further studies must be developed in this area.

312539.fig.005
Figure 5: Polyelectrolytic effect of TMC and TMC/sodium dodecyl sulfate (SDS) complex in aqueous solution (adapted from [83]).

The hydrophilic character is another important property of chitosan quaternary salt that shows the net force presented in the surface of a smooth solid film. This property is useful in protecting coating experiments in which the interactions existent in the interfaces peel/coating film/microorganism spores play an important role. It is generally measured by contact angle technique and expressed in terms of wettability [49, 84]. For TMC, a sharp decrease in the contact angle values was found when compared with the parent sample due the presence of permanent positive charges which increased the hydrophilic character of the quaternary salts. On the other hand, the methyl groups, having apolar character, also contribute to hydrophilic character decreasing, as seen for highly substituted samples [84].

3. Antibacterial Action of Chitosan Quaternary Salts

The mode of action of antimicrobial activity of chitosan derivatives is strictly linked with that described for chitosan itself [8587]. In fact, the main objective of the derivatives synthesis is to enhance such intrinsic property of chitosan. Particularly for quaternary salts, the advantage over the parent chitosan is attributed to its permanent positive charge and the synergetic effect of the pendant alkyl moiety. Further, the solubility of chitosan at physiological pH is low, while for the quaternary salts the solubility is high both in acid and basic conditions.

In fact, the better antibacterial activity of quaternary salt cannot rely only on charge density because at acid medium the chitosan chain is almost completely protonated. As pointed out by Xu et al. [44], it is necessary also to consider the degree of ionization and the chain conformation. For example, at moderated acid conditions, the repulsive forces among quaternary groups (–N+(CH3)3) are weaker than that among protonated chitosan amine groups, which increases the chain flexibility and facilitates the interaction with bacteria cell envelope. Despite this, the increase of the is not a guarantee of better antibacterial activity. It depends on the pH. Some investigations showed that the antibacterial efficiency decreased as the increased at acid conditions, but increased as the increased at neutral conditions [44, 88]. Here, the knowledge of chain conformation is fundamental for a better comprehension of this behavior.

The cell wall of bacteria is a complex structure made mainly of lipopolysaccharide (gram-negative) and peptidoglycan associated with teichoic acid (gram-positive), both having anionic groups (phosphate, carboxyl, N-acetylglucosamine, N-acetylmuramic acid, etc.) that can interact (hydrogen bond, electrostatic, etc) with the polycationic structure of the quaternary salt. The chelant effect of quaternary salts on divalent cations present on cell wall also contributes to disrupt the integrity of the membrane [85].

The presence and length of alkyl moiety on amine group is another relevant question on such derivatives. The hydrophobic affinity between the alkyl chain and phospholipids of the bacterial membrane has assumed to enhance the antibacterial activity [40, 41, 43, 89]. In this attempt, several chitosan derivatives were synthesized, involving several paths as alkylation, covalent addition of a substituent containing a quaternary ammonium group and extent methylation. Such derivatives have a very complex structure with variable antibacterial activity [90, 91]. However, a series of N-(2-quaternary ammoniumyl) acyl derivatives with different chain moiety did not exhibit better antibacterial activity than the TMC [45]. In another study, the methylated N-aryl chitosan did not improve so much the antibacterial activity, with similar results that are found for pure TMC [42].

E. coli and S. aureus have been adopted as model of gram-negative and gram-positive bacteria, respectively, in most of the studies, with MIC (Minimum Inhibitory Concentration) as lower as 0.125  g/mL for E. coli and 0.0625  g/mL for S. aureus [44]. However, other bacteria as Enterococcus facialis and Pseudomonas aeruginosa have shown susceptible to TMC, with MIC of 128 and 256  g/mL respectively [45]. Streptococcus mutans, responsible for dental caries in humans, was also susceptible to chitooligosaccharide quaternized via covalent addition of glycidyl trimethylammonium chloride [92]. In the presence of a 0.1% solution, the quaternary derivative inhibited near 90% of the colonies growth, while the unmodified counterpart only 10% after 5 hours of exposure. Belalia et al. [93] also gave an important contribution, studding the action of quaternary salt against Listeria monocytogenes and Salmonella typhimurium in their attempt to improve the properties of biocomposite for packaging purposes. The derivative was based on Muzzarelli and Tanfani [5] method and showed inhibition of 96% of L. monocytogenes and 100% of S. typhimurium development.

The most important issue from now is to establish the effectiveness of such derivatives at in situ experiments. The antibacterial activity of chitosan has been proved in several in situ experiments as food preservative, packaging material, edible film and coating, wound dressing materials, cotton fabrics, and many others [86]. In this line, experiments with TMC were reported, showing the effectiveness of electrospun mats of TMC/poly(vinyl alcohol) [94] and mats of TMC/poly(vinyl pyrrolidone) [95] against E. coli and S. aureus. The potentiality of such mats was regarding wound-dressing applications. Antibacterial activities of finished cotton fabrics impregnated with chitosan derivative were also evaluated, although the synthesis path was similar to that complex one cited above, based on alkylation, covalent addition of a quaternary substituent, and further methylation [96]. Related to food area, the work of Belalia et al. [93] contributed to knowledge in elaboration of effective antibacterial biopackagings with improved mechanical property.

In this way, the antibacterial activity of cast TMC film helps to understand the behavior of in situ conditions. For this, a qualitative test can be performed by agar diffusion method [97]. Film cuts were placed on the medium, and the inhibitory activity was measured based on the average diameter of the clear inhibition zone. Figure 6 illustrates the measurable zone.

fig6
Figure 6: Examples of inhibitory effect of chitosan and TMC film against gram-positive bacteria S. aureus.

The diameters of inhibitory zones surrounding film discs as well as the contact areas of edible films with agar surface were reported with significant results. A wide clear zone on solid media has been observed for S. aureus growth inhibition, whereas inhibition for E. coli is not effective, in some way confirming better antibacterial activity against gram-positive bacteria. The film concentration also appears to be important, mainly for the TMC, whose inhibition zone increases exponentially with the concentration (Figure 7). For commercial chitosan, the bacterial activity is inferior and not dependent on the concentration.

312539.fig.007
Figure 7: Inhibition zone in function of the film concentration as measured against the bacteria S. aureus.

4. Chitosan Quaternary Salt and Antifungal Activity

Similar to antibacterial properties, the derivative synthesis has the main objective to enhance the antifungal property of chitosan largely reported in the literature [87, 98100]. Particularly for fungi, such derivative study is more important once chitosan generally has a stronger antimicrobial activity against bacteria rather than against fungi [101]. Common plant pathogenic fungi such as Botrytis cinerea, Penicillium expansum, Rhizopus stolonifer, Penicillium digitatum, and Penicillium italicum, among many others, have been tested with chitosan, owing to its impact in the agricultural business.

In order to enhance the chitosan antifungal activity some methodology has been proposed. For example, the synergistic effect of microbial antagonists, for example, Candida saitoana Cryptococcus laurentii, enhanced significantly the antifungal activity of chitosan [101]. Accordingly, chitosan was effective against P. expansu spore germination in vitro and in vivo when introduced on the wound of Fuji apple (Malus domestica Borkh.). They found a complete inhibition of P. expansum spore germinations at concentrations of 0.3% or above of chitosan for in vitro test. On the other hand, after addition of C. laurentii antagonist the inhibitory concentration dropped to 0.1%. Addition of essential oil [102] or changing the organic acid, for example, acetic, sorbic, propionic, lactic, and glutamic acids [103], were also proposed to enhance the chitosan antifungal activity, representing an actual alternative to synthetic fungicide such as thiabendazole.

Finally, the chemical modification of chitosan as potential antifungal has emerged, however, with few publications. Some chitosan derivatives studied as antifungal were N,O-carboxymethyl chitosan [104], glycolchitosan [105], and thiourea derivative [106]. It was found that the hydrosoluble derivative N,O-carboxymethyl chitosan was less effective than chitosan in reducing the radial growth of the fungi B. cinerea and R. stolonifer, while the acid soluble derivative glycolchitosan was more effective than chitosan against the fungi B. cinerea and P. expansum. Once again, it looks that fungicidal effect depends on the charge density of the chitosan chain. Also, Rabea and colleagues [107110] have synthesized a series of N-alkyl and N-aryl chitosan derivatives with superior fungicidal and insecticidal functions that founded for chitosan, although soluble only in acid conditions.

Recently, Badawy [111] has shown that the quaternary salts of alkyl chitosan derivatives also exhibit antifungal property against plant fungi Pythium debaryanum, B. cinerea and Fusarium oxysporum. Accordingly, in vitro results showed that the best antifungal quaternary salts were N-octyl-N,N-dimethylchitosan against B. cinerea (383 mg/L), F. oxysporum (812 mg/L), and P. debaryanum (440 mg/L), on the basis of the effective concentration that caused 50% inhibition of mycelial growth (EC50). TCM also showed a good activity with EC50 = 1467, 875, and 907 mg/L respectively, for B. cinerea, F. oxysporum, and P. debaryanum. This is a good achievement when compared with chitosan that showed EC50 > 3000 mg/L in all the cases. Despite the solubility of those salts in aqueous media, the author used a mild acetic acid solution to enhance salt solubility. The action of those quaternary salts was also effective against spore germination, generally increasing with an increase in the chain length of alkyl substituent.

Other hydrosoluble chitosan derivatives, bearing salicylaldehyde and pyridinium ion [112], were tested against some plant-threatening pathogenic fungi Cladosporium cucumerinum, Monilinia fructicola, Colletotrichum lagenarium, and F. oxysporum. The best performance of those salts was near 500–1000  g/mL.

Chitosan quaternary salt has shown good activity against fungal deterioration of in situ experiments with apple [113]. The TMC showed important antifungal activity against P. expansum which was strongly dependent on the characteristics of the polymer (Figure 8). By comparing the samples TMC1 ( = 18%, low solubility and low viscosity) and TMC2 ( 45%, high solubility and high viscosity), it was found that the latter presents superior antifungal activity. The chitosan derivatives N-butyl-N,N-dimethylchitosan, N-octyl-N,N-dimethylchitosan, and N-dodecyl-N,N-dimethylchitosan also showed good antifungal activity (Figure 8). The introduction of alkyl substituents on the chitosan chain strongly decreases the polymer solubility, a property which seems to play a very important role in the antifungal activity. The chitosan derivative TMC dissolved in water solution exhibited moderate antifungal activity against P. digitatum and B. cinerea with fungal spread 28.6% and 45.5%, respectively, as compared to the respective controls 34.9% and 51.5%. As observed for P. expansum, the acetic acid medium was favorable to fungal spread on cut apple surface, reaching values of 100% and 87.1% for P. digitatum and B. cinerea, respectively, while both control samples were 100%.

312539.fig.008
Figure 8: P. expansum colonies development on cut apple surface coated with different coating solutions after 7 days of storage in a greenhouse at 28°C and 80% humidity. (A) acetic acid control; (B) water control; (C) chitosan; (D) TMC1; (E) TMC2; (F) N-butyl-N,N-dimethylchitosan; (G) N-octyl-N,N-dimethylchitosan; (H) N-dodecyl-N,N-dimethylchitosan.

The mechanism of action of quaternary salts against fungi still debated but generally is attributed to formation of polyelectrolyte complex between different charged species, in a similar way that took for antibacterial action [111]. On the other hand, microscopic observation has shown that chitosan oligomers can also diffuse inside hyphae interfering on the enzymes activity responsible for the fungus growth [106].

5. Conclusion

Quaternary salts of chitosan can be prepared with different degree of substitution mainly via methyl iodide or dimethylsulfate synthetic route. The last one shows the advantage of better control and reproducibility of the reaction steps. New and more security synthetic routes, free of hazardous methylant agent, can be developed to attenuate the purification costs for grade suitable for pharmaceutical and food areas. The water solubility is attained by introduction of CH3 moiety in the amino group, generating a permanent cationic polyelectrolyte. This feature enhances the chitosan applicability in a large pH range opening up a broad range of possibilities. Ordinary, by increasing the reaction time and reaction steps, a higher degree of N-quaternization is achieved. However, the overmethylation can yield products with low degrees of substitution and polymerization. The antifungal activity represents a potential application as edible coating and film for this hydrosoluble derivative once the acid medium used for preparation of chitosan solution is very aggressive to cut fruit tissue. Regarding the antibacterial activity, it revealed higher inhibition against gram-positive than gram-negative bacteria. Finally, nanoparticles-based quaternary salts promise to improve these already cited properties. TMC and other chitosan quaternary salts have effectively antimicrobial activity; however, experiments in situ must help the applications in real conditions.

Acknowledgments

This work was supported by FAPESP, CNPq, and Embrapa.

References

  1. M. L. Wolfrom, J. R. Vercellotti, and D. Horton, “Methylation studies on carboxyl-reduced heparin- 2-amino-2-deoxy-3,6-di-O-methyl-alpha-d-glucopyranose from the methylation of chitosan,” Journal of Organic Chemistry, vol. 29, no. 3, pp. 547–550, 1964. View at Scopus
  2. L. A. Nudga, E. A. Plisko, and S. N. Danilov, “Cyanoethylation of chitosan,” Zhurnal Obshchei Khimii, vol. 45, no. 5, pp. 1145–1149, 1975.
  3. L. A. Nudga, E. A. Plisko, and S. N. Danilov, “O-alkylation of chitosan,” Zhurnal Obshchei Khimii, vol. 43, no. 12, pp. 2752–2756, 1973.
  4. L. A. Nudga, E. A. Plisko, and S. N. Danilov, “N-alkylation of chitosan,” Zhurnal Obshchei Khimii, vol. 43, no. 12, pp. 2756–2760, 1973.
  5. R. A. A. Muzzarelli and F. Tanfani, “The N-permethylation of chitosan and the preparation of N-trimethyl chitosan iodide,” Carbohydrate Polymers, vol. 5, no. 4, pp. 297–307, 1985. View at Scopus
  6. A. Domard, M. Rinaudo, and C. Terrassin, “New method for the quaternization of chitosan,” International Journal of Biological Macromolecules, vol. 8, no. 2, pp. 105–107, 1986. View at Scopus
  7. A. Domard, C. Gey, M. Rinaudo, and C. Terrassin, “13C and 1H n.m.r. spectroscopy of chitosan and N-trimethyl chloride derivatives,” International Journal of Biological Macromolecules, vol. 9, no. 4, pp. 233–237, 1987. View at Scopus
  8. P. Dung, M. Milas, M. Rinaudo, and J. Desbrières, “Water soluble derivatives obtained by controlled chemical modifications of chitosan,” Carbohydrate Polymers, vol. 24, no. 3, pp. 209–214, 1994. View at Scopus
  9. J. Murata, Y. Ohya, and T. Ouchi, “Possibility of application of quaternary chitosan having pendant galactose residues as gene delivery tool,” Carbohydrate Polymers, vol. 29, no. 1, pp. 69–74, 1996. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Murata, Y. Ohya, and T. Ouchi, “Design of quaternary chitosan conjugate having antennary galactose residues as a gene delivery tool,” Carbohydrate Polymers, vol. 32, no. 2, pp. 105–109, 1997. View at Scopus
  11. T. Kean, S. Roth, and M. Thanou, “Trimethylated chitosans as non-viral gene delivery vectors: cytotoxicity and transfection efficiency,” Journal of Controlled Release, vol. 103, no. 3, pp. 643–653, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. S. R. Mao, U. Bakowsky, A. Jintapattanakit, and T. Kissel, “Self-assembled polyelectrolyte nanocomplexes between chitosan derivatives and insulin,” Journal of Pharmaceutical Sciences, vol. 95, no. 5, pp. 1035–1048, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. Z. W. Mao, L. Ma, Y. Jiang, M. Yan, C. Y. Gao, and J. C. Shen, “N,N,N-trimethylchitosan chloride as a gene vector: synthesis and application,” Macromolecular Bioscience, vol. 7, no. 6, pp. 855–863, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. O. Germershaus, S. R. Mao, J. Sitterberg, U. Bakowsky, and T. Kissel, “Gene delivery using chitosan, trimethyl chitosan or polyethylenglycol-graft-trimethyl chitosan block copolymers: establishment of structure-activity relationships in vitro,” Journal of Controlled Release, vol. 125, no. 2, pp. 145–154, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. W. Sajomsang, U. Ruktanonchai, P. Gonil, V. Mayen, and P. Opanasopit, “Methylated N-aryl chitosan derivative/DNA complex nanoparticles for gene delivery: synthesis and structure-activity relationships,” Carbohydrate Polymers, vol. 78, no. 4, pp. 743–752, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Werle, H. Takeuchi, and A. Bernkop-Schnurch, “Modified chitosans for oral drug delivery,” Journal of Pharmaceutical Sciences, vol. 98, no. 5, pp. 1643–1656, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. M. N. V. R. Kumar, “A review of chitin and chitosan applications,” Reactive & Functional Polymers, vol. 46, no. 1, pp. 1–27, 2000. View at Scopus
  18. I. Aranaz, M. Mengíbar, R. Harris et al., “Functional characterization of chitin and chitosan,” Current Chemical Biology, vol. 3, no. 2, pp. 203–230, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. A. F. Kotze, H. L. Lueßen, B. J. de Leeuw, B. G. de Boer, J. C. Verhoef, and H. E. Junginger, “N-Trimethyl chitosan chloride as a potential absorption enhancer across mucosal surfaces: in vitro evaluation in intestinal epithelial cells (Caco-2),” Pharmaceutical Research, vol. 14, no. 9, pp. 1197–1202, 1997. View at Publisher · View at Google Scholar
  20. A. F. Kotze, H. L. Lueßen, B. J. de Leeuw, B. G. de Boer, J. C. Verhoef, and H. E. Junginger, “Chitosans for enhanced delivery of therapeutic peptides across intestinal epithelia: in vitro evaluation in Caco-2 cell monolayers,” International Journal of Biological Macromolecules, vol. 159, no. 2, pp. 243–253, 1997. View at Publisher · View at Google Scholar
  21. A. F. Kotze, H. L. Lueßen, B. J. de Leeuw, B. G. de Boer, J. C. Verhoef, and H. E. Junginger, “Comparison of the effect of different chitosan salts and N-trimethyl chitosan chloride on the permeability of intestinal epithelial cells (Caco-2),” Journal of Controlled Release, vol. 51, no. 1, pp. 35–46, 1998. View at Publisher · View at Google Scholar
  22. A. B. Sieval, M. Thanou, A. F. Kotze, J. C. Verhoef, J. Brussee, and H. E. Junginger, “Preparation and NMR characterization of highly substituted N-trimethyl chitosan chloride,” Carbohydrate Polymers, vol. 36, no. 2-3, pp. 157–165, 1998. View at Scopus
  23. A. F. Kotze, M. M. Thanou, H. L. Lueßen, B. G. de Boer, J. C. Verhoef, and H. E. Junginger, “Effect of the degree of quaternization of N-trimethyl chitosan chloride on the permeability of intestinal epithelial cells (Caco-2),” European Journal of Pharmaceutics and Biopharmaceutics, vol. 47, no. 3, pp. 269–274, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. M. M. Thanou, A. F. Kotze, T. Scharringhausen et al., “Effect of degree of quaternization of N-trimethyl chitosan chloride for enhanced transport of hydrophilic compounds across intestinal Caco-2 cell monolayers,” Journal of Controlled Release, vol. 64, no. 1–3, pp. 15–25, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. J. H. Hamman and A. F. Kotze, “Effect of the type of base and number of reaction steps on the degree of quaternization and molecular weight of N-trimethyl chitosan chloride,” Drug Development and Industrial Pharmacy, vol. 27, no. 5, pp. 373–380, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. J. H. Hamman, M. Stander, and A. F. Kotze, “Effect of the degree of quaternisation of N-trimethyl chitosan chloride on absorption enhancement: in vivo evaluation in rat nasal epithelia,” International Journal of Pharmaceutics, vol. 232, no. 1-2, pp. 235–242, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Snyman, J. H. Hamman, J. S. Kotze, J. E. Rollings, and A. F. Kotze, “The relationship between the absolute molecular weight and the degree of quaternisation of N-trimethyl chitosan chloride,” Carbohydrate Polymers, vol. 50, no. 2, pp. 145–150, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. S. M. van der Merwe, J. C. Verhoef, J. H. M. Verheijden, A. F. Kotze, and H. E. Junginger, “Trimethylated chitosan as polymeric absorption enhancer for improved peroral delivery of peptide drugs,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 58, no. 2, pp. 225–235, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Polnok, G. Borchard, J. C. Verhoef, N. Sarisuta, and H. E. Junginger, “Influence of methylation process on the degree of quaternization of N-trimethyl chitosan chloride,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 57, no. 1, pp. 77–83, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Jonker-Venter, D. Snyman, C. J. Van Rensburg et al., “Low molecular weight quaternised chitosan (II): in vitro assessment of absorption enhancing properties,” Pharmazie, vol. 61, no. 4, pp. 301–305, 2006. View at Scopus
  31. G. Sandri, S. Rossi, M. C. Bonferoni et al., “Buccal penetration enhancement properties of N-trimethyl chitosan: influence of quaternization degree on absorption of a high molecular weight molecule,” International Journal of Pharmaceutics, vol. 297, no. 1-2, pp. 146–155, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Sandri, S. Rossi, M. C. Bonferoni et al., “Influence of N-trimethylation degree on buccal penetration enhancement properties of N-trimethyl chitosan: absorption of a high molecular weight molecule,” European Journal of Pharmaceutical Sciences, vol. 25, supplement 1, pp. S8–S10, 2005. View at Scopus
  33. B. I. Florea, M. Thanou, H. E. Junginger, and G. Borchard, “Enhancement of bronchial octreotide absorption by chitosan and N-trimethyl chitosan shows linear in vitro/in vivo correlation,” Journal of Controlled Release, vol. 110, no. 2, pp. 353–361, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Zambito, C. Zaino, S. Burchielli, V. Carelli, M. F. Serafini, and G. Di Colo, “Novel quaternary ammonium chitosan derivatives for the promotion of intraocular drug absorption,” Journal of Drug Delivery Science and Technology, vol. 17, no. 1, pp. 19–24, 2007. View at Scopus
  35. W. He, X. X. Guo, and M. Zhang, “Transdermal permeation enhancement of N-trimethyl chitosan for testosterone,” International Journal of Pharmaceutics, vol. 356, no. 1-2, pp. 82–87, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. M. C. Bonferoni, G. Sandri, S. Rossi, F. Ferrari, and C. Caramella, “Chitosan and its salts for mucosal and transmucosal delivery,” Expert Opinion on Drug Delivery, vol. 6, no. 9, pp. 923–939, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. V. K. Mourya and N. N. Inamdar, “Trimethyl chitosan and its applications in drug delivery,” Journal of Materials Science, vol. 20, no. 5, pp. 1057–1079, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. J. K. Sahni, S. Chopra, F. J. Ahmad, and R. K. Khar, “Potential prospects of chitosan derivative trimethyl chitosan chloride (TMC) as a polymeric absorption enhancer: synthesis, characterization and applications,” Journal of Pharmacy and Pharmacology, vol. 60, no. 9, pp. 1111–1119, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. G. Lang, H. Wendel, and S. Birkel, “Quaternary chitosan salts,” in Chitin Handbook, R. A. A. Muzzarelli and M. G. Peter, Eds., pp. 384–389, European Chitin Society press, Grottammare, Italy, 1997.
  40. C. H. Kim, J. W. Choi, H. J. Chun, and K. S. Choi, “Synthesis of chitosan derivatives with quaternary ammonium salt and their antibacterial activity,” Polymer Bulletin, vol. 38, no. 4, pp. 387–393, 1997. View at Scopus
  41. Z. Jia, D. Shen, and W. Xu, “Synthesis and antibacterial activities of quaternary ammonium salt of chitosan,” Carbohydrate Research, vol. 333, no. 1, pp. 1–6, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. W. Sajomsang, S. Tantayanon, V. Tangpasuthadol, and W. H. Daly, “Synthesis of methylated chitosan containing aromatic moieties: chemoselectivity and effect on molecular weight,” Carbohydrate Polymers, vol. 72, no. 4, pp. 740–750, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. W. Sajomsang, P. Gonil, and S. Saesoo, “Synthesis and antibacterial activity of methylated N-(4-N,N-dimethylaminocinnamyl) chitosan chloride,” European Polymer Journal, vol. 45, no. 8, pp. 2319–2328, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. T. Xu, M. Xin, M. Li, H. Huang, and S. Zhou, “Synthesis, characteristic and antibacterial activity of N,N,N-trimethyl chitosan and its carboxymethyl derivatives,” Carbohydrate Polymers, vol. 81, no. 4, pp. 931–936, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. Ö. V. Rúnarsson, J. Holappa, C. Malainer et al., “Antibacterial activity of N-quaternary chitosan derivatives: synthesis, characterization and structure activity relationship (SAR) investigations,” European Polymer Journal, vol. 46, no. 6, pp. 1251–1267, 2010. View at Publisher · View at Google Scholar
  46. E. Curti, D. de Britto, and S. P. Campana-Filho, “Methylation of chitosan with iodomethane: effect of reaction conditions on chemoselectivity and degree of substitution,” Macromolecular Bioscience, vol. 3, no. 10, pp. 571–576, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. D. de Britto and S. P. Campana-Filho, “A kinetic study on the thermal degradation of N,N,N-trimethylchitosan,” Polymer Degradation and Stability, vol. 84, no. 2, pp. 353–361, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. E. Curti and S. P. Campana-Filho, “Viscosity behavior of chitosan and N,N,N-trimethylchitosan chloride salts in acid-free aqueous solution,” Journal of Macromolecular Science, vol. 43, no. 3, pp. 555–572, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. D. de Britto and O. B. G. Assis, “A novel method for obtaining a quaternary salt of chitosan,” Carbohydrate Polymers, vol. 69, no. 2, pp. 305–310, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. D. de Britto and O. B. G. Assis, “Synthesis and mechanical properties of quaternary salts of chitosan-based films for food application,” International Journal of Biological Macromolecules, vol. 41, no. 2, pp. 198–203, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. D. de Britto, L. A. Forato, and O. B. G. Assis, “Determination of the average degree of quaternization of N,N,N-trimethylchitosan by solid state 13C NMR,” Carbohydrate Polymers, vol. 74, no. 1, pp. 86–91, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. R. J. Verheul, M. Amidi, S. van der Wal, E. van Riet, W. Jiskoot, and W. E. Hennink, “Synthesis, characterization and in vitro biological properties of O-methyl free N,N,N-trimethylated chitosan,” Biomaterials, vol. 29, no. 27, pp. 3642–3649, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. O. V. Rúnarsson, J. Holappa, S. Jónsdóttir, H. Steinsson, and M. Másson, “N-selective ‘one pot’ synthesis of highly N-substituted trimethyl chitosan (TMC),” Carbohydrate Polymers, vol. 74, no. 3, pp. 740–744, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. Y. M. Xu, Y. M. Du, R. H. Huang, and L. Gao, “Preparation and modification of N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride nanoparticle as a protein carrier,” Biomaterials, vol. 24, no. 27, pp. 5015–5022, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Amidi, S. G. Romeijn, G. Borchard, H. E. Junginger, W. E. Hennink, and W. Jiskoot, “Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system,” Journal of Controlled Release, vol. 111, no. 1-2, pp. 107–116, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Amidi, S. G. Romeijn, J. C. Verhoef et al., “N-Trimethyl chitosan (TMC) nanoparticles loaded with influenza subunit antigen for intranasal vaccination: biological properties and immunogenicity in a mouse model,” Vaccine, vol. 25, no. 1, pp. 144–153, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. B. Sayin, S. Somavarapu, X. W. Li et al., “Mono-N-carboxymethyl chitosan (MCC) and N-trimethyl chitosan (TMC) nanoparticles for non-invasive vaccine delivery,” International Journal of Pharmaceutics, vol. 363, no. 1-2, pp. 139–148, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. B. Slutter, L. Plapied, V. Fievez et al., “Mechanistic study of the adjuvant effect of biodegradable nanoparticles in mucosal vaccination,” Journal of Controlled Release, vol. 138, no. 2, pp. 113–121, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. F. Chen, Z. R. Zhang, and Y. Huang, “Evaluation and modification of N-trimethyl chitosan chloride nanoparticles as protein carriers,” International Journal of Pharmaceutics, vol. 336, no. 1, pp. 166–173, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. Y. Sun and A. J. Wan, “Preparation of nanoparticles composed of chitosan and its derivatives as delivery systems for macromolecules,” Journal of Applied Polymer Science, vol. 105, no. 2, pp. 552–561, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. F. Chen, Z. R. Zhang, F. Yuan, X. Qin, M. T. Wang, and Y. Huang, “In vitro and in vivo study of N-trimethyl chitosan nanoparticles for oral protein delivery,” International Journal of Pharmaceutics, vol. 349, no. 1-2, pp. 226–233, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. A. M. M. Sadeghi, F. A. Dorkoosh, M. R. Avadi, P. Saadat, M. Rafiee-Tehrani, and H. E. Junginger, “Preparation, characterization and antibacterial activities of chitosan, N-trimethyl chitosan (TMC) and N-diethylmethyl chitosan (DEMC) nanoparticles loaded with insulin using both the ionotropic gelation and polyelectrolyte complexation methods,” International Journal of Pharmaceutics, vol. 355, no. 1-2, pp. 299–306, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. J. Haas, M. N. V. R. Kumar, G. Borchard, U. Bakowsky, and C. M. Lehr, “Preparation and characterization of chitosan and trimethyl-chitosan modified poly-(ε-caprolactone) nanoparticles as DNA carriers,” AAPS PharmSciTech, vol. 6, no. 1, pp. E22–E30, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. S. Mao, O. Germershaus, D. Fischer, T. Linn, R. Schnepf, and T. Kissel, “Uptake and transport of PEG-graft-trimethyl-chitosan copolymer-insulin nanocomplexes by epithelial cells,” Pharmaceutical Research, vol. 22, no. 12, pp. 2058–2068, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. S. Mao, U. Bakowsky, A. Jintapattanakit, and T. Kissel, “Self-assembled polyelectrolyte nanocomplexes between chitosan derivatives and insulin,” Journal of Pharmaceutical Sciences, vol. 95, no. 5, pp. 1035–1048, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. L. C. Yin, J. Y. Ding, C. B. He, L. M. Cui, C. Tang, and C. H. Yin, “Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery,” Biomaterials, vol. 30, no. 29, pp. 5691–5700, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. Y. Ding, X. H. Xia, and C. Zhang, “Synthesis of metallic nanoparticles protected with N,N,N-trimethyl chitosan chloride via a relatively weak affinity,” Nanotechnology, vol. 17, no. 16, pp. 4156–4162, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. X. J. Yuan, Z. R. Zhang, Q. G. Song, and Q. He, “Research on thymopentin loaded oral N-trimethyl chitosan nanoparticles,” Archives of Pharmacal Research, vol. 29, no. 9, pp. 795–799, 2006. View at Scopus
  69. S. Cafaggi, E. Russo, R. Stefani et al., “Preparation and evaluation of nanoparticles made of chitosan or N-trimethyl chitosan and a cisplatin-alginate complex,” Journal of Controlled Release, vol. 121, no. 1-2, pp. 110–123, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. Y. Zheng, Z. Cai, X. Song et al., “Preparation and characterization of folate conjugated N-trimethyl chitosan nanoparticles as protein carrier targeting folate receptor: in vitro studies,” Journal of Drug Targeting, vol. 17, no. 4, pp. 294–303, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. C. Zhang, Y. Ding, Q. E. Ping, and L. L. Yu, “Novel chitosan-derived nanomaterials and their micelle-forming properties,” Journal of Agricultural and Food Chemistry, vol. 54, no. 22, pp. 8409–8416, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. C. Zhang, Y. Ding, L. L. Yu, and Q. Ping, “Polymeric micelle systems of hydroxycamptothecin based on amphiphilic N-alkyl-N-trimethyl chitosan derivatives,” Colloids and Surfaces B, vol. 55, no. 2, pp. 192–199, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. F. L. Mi, Y. Y. Wu, Y. H. Lin et al., “Oral delivery of peptide drugs using nanoparticles self-assembled by poly(γ-glutamic acid) and a chitosan derivative functionalized by trimethylation,” Bioconjugate Chemistry, vol. 19, no. 6, pp. 1248–1255, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. A. M. M. Sadeghi, F. A. Dorkoosh, M. R. Avadi et al., “Permeation enhancer effect of chitosan and chitosan derivatives: comparison of formulations as soluble polymers and nanoparticulate systems on insulin absorption in Caco-2 cells,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 70, no. 1, pp. 270–278, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. K. Van de Velde and P. Kiekens, “Structure analysis and degree of substitution of chitin, chitosan and dibutyrylchitin by FT-IR spectroscopy and solid state 13C NMR,” Carbohydrate Polymers, vol. 58, no. 4, pp. 409–416, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. W. Boonyo, H. E. Junginger, N. Waranuch, A. Polnok, and T. Pitaksuteepong, “Chitosan and trimethyl chitosan chloride (TMC) as adjuvants for inducing immune responses to ovalbumin in mice following nasal administration,” Journal of Controlled Release, vol. 121, no. 3, pp. 168–175, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. A. Jintapattanakit, S. Mao, T. Kissel, and V. B. Junyaprasert, “Physicochemical properties and biocompatibility of N-trimethyl chitosan: effect of quaternization and dimethylation,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 70, no. 2, pp. 563–571, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. R. J. Verheul, M. Amidi, M. J. van Steenbergen, E. van Riet, W. Jiskoot, and W. E. Hennink, “Influence of the degree of acetylation on the enzymatic degradation and in vitro biological properties of trimethylated chitosans,” Biomaterials, vol. 30, no. 18, pp. 3129–3135, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. N. Hagenaars, R. J. Verheul, I. Mooren et al., “Relationship between structure and adjuvanticity of N,N,N-trimethyl chitosan (TMC) structural variants in a nasal influenza vaccine,” Journal of Controlled Release, vol. 140, no. 2, pp. 126–133, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. B. Slütter, P. C. Soema, Z. Ding, R. Verheul, W. Hennink, and W. Jiskoot, “Conjugation of ovalbumin to trimethyl chitosan improves immunogenicity of the antigen,” Journal of Controlled Release, vol. 143, no. 2, pp. 207–214, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. P. Vongchan, Y. Wutti-In, W. Sajomsang, P. Gonil, S. Kothan, and R. J. Linhardt, “N,N,N-Trimethyl chitosan nanoparticles for the delivery of monoclonal antibodies against hepatocellular carcinoma cells,” Carbohydrate Polymers, vol. 85, no. 1, pp. 215–220, 2011. View at Publisher · View at Google Scholar
  82. D. de Britto, F. R. Frederico, and O. B. Garrido Assis, “Optimization of N, N, N-trimethylchitosan synthesis by factorial design,” Polymer International, vol. 60, no. 6, pp. 910–915, 2011. View at Publisher · View at Google Scholar
  83. D. de Britto, Estudos da obtenção e das propriedades de carboximetilcelulose (CMC) e N,N,N-trimetilquitosana (TMQ) e das interações do complexo polieletrolítico CMC/TMC com Cu2+, ácido húmico e atrazina, Ph.D. thesis, USP/IQSC, São Carlos, Brazil, 2003.
  84. D. de Britto and O. B. G. Assis, “Hydrophilic and morphological aspects of films based on quaternary salts of chitosan for edible applications,” Packaging Technology and Science, vol. 23, no. 2, pp. 111–119, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. R. C. Goy, D. de Britto, and O. B. G. Assis, “A Review of the Antimicrobial Activity of Chitosan,” Polímeros: Ciência e Tecnologia, vol. 19, no. 3, pp. 241–247, 2009.
  86. M. Kong, X. G. Chen, K. Xing, and H. J. Park, “Antimicrobial properties of chitosan and mode of action: a state of the art review,” International Journal of Food Microbiology, vol. 144, no. 1, pp. 51–63, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. E. I. Rabea, M. E. -T. Badawy, C. V. Stevens, G. Smagghe, and W. Steurbaut, “Chitosan as antimicrobial agent: applications and mode of action,” Biomacromolecules, vol. 4, no. 6, pp. 1457–1465, 2003. View at Publisher · View at Google Scholar · View at Scopus
  88. Ö. V. Rúnarsson, J. Holappa, T. Nevalainen et al., “Antibacterial activity of methylated chitosan and chitooligomer derivatives: synthesis and structure activity relationships,” European Polymer Journal, vol. 43, no. 6, pp. 2660–2671, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. M. R. Avadi, A. M. M. Sadeghi, A. Tahzibi et al., “Diethylmethyl chitosan as an antimicrobial agent: synthesis, characterization and antibacterial effects,” European Polymer Journal, vol. 40, no. 7, pp. 1355–1361, 2004. View at Publisher · View at Google Scholar · View at Scopus
  90. W. Sajomsang, S. Tantayanon, V. Tangpasuthadol, and W. H. Daly, “Quaternization of N-aryl chitosan derivatives: synthesis, characterization, and antibacterial activity,” Carbohydrate Research, vol. 344, no. 18, pp. 2502–2511, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. W. Sajomsang, P. Gonil, and S. Tantayanon, “Antibacterial activity of quaternary ammonium chitosan containing mono or disaccharide moieties: preparation and characterization,” International Journal of Biological Macromolecules, vol. 44, no. 5, pp. 419–427, 2009. View at Publisher · View at Google Scholar · View at Scopus
  92. J. Y. Kim, J. K. Lee, T. S. Lee, and W. H. Park, “Synthesis of chitooligosaccharide derivative with quaternary ammonium group and its antimicrobial activity against Streptococcus mutans,” International Journal of Biological Macromolecules, vol. 32, no. 1-2, pp. 23–27, 2003. View at Publisher · View at Google Scholar · View at Scopus
  93. R. Belalia, S. Grelier, M. Benaissa, and V. Coma, “New bioactive biomaterials based on quaternized chitosan,” Journal of Agricultural and Food Chemistry, vol. 56, no. 5, pp. 1582–1588, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. M. Ignatova, K. Starbova, N. Markova, N. Manolova, and I. Rashkov, “Electrospun nano-fibre mats with antibacterial properties from quaternised chitosan and poly(vinyl alcohol),” Carbohydrate Research, vol. 341, no. 12, pp. 2098–2107, 2006. View at Publisher · View at Google Scholar · View at Scopus
  95. M. Ignatova, N. Manolova, and I. Rashkov, “Novel antibacterial fibers of quaternized chitosan and poly(vinyl pyrrolidone) prepared by electrospinning,” European Polymer Journal, vol. 43, no. 4, pp. 1112–1122, 2007. View at Publisher · View at Google Scholar · View at Scopus
  96. X. Fu, Y. Shen, X. Jiang, D. Huang, and Y. Yan, “Chitosan derivatives with dual-antibacterial functional groups for antimicrobial finishing of cotton fabrics,” Carbohydrate Polymers, vol. 85, no. 1, pp. 221–227, 2011. View at Publisher · View at Google Scholar
  97. R. C. Goy, D. de Britto, and O. B. G. Assis, “Antimicrobial analysis of gels and films from chitosan and N,N,N-trimethyl chitosan,” in Advances in Chitin Science, T. T. Franco and M. G. Peter, Eds., vol. 12, pp. 129–132, Unicamp/University of Potsdam, Potsdam, Germany, 2010.
  98. F. Shahidi, J. K. V. Arachchi, and Y. -J. Jeon, “Food applications of chitin and chitosans,” Trends in Food Science and Technology, vol. 10, no. 2, pp. 37–51, 1999. View at Publisher · View at Google Scholar · View at Scopus
  99. S. B. Baños, A. N. H. Lauzardo, M. G. V. del Valle et al., “Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities,” Crop Protection, vol. 25, no. 2, pp. 108–118, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. H. K. No, S. P. Meyers, W. Prinyawiwatkul, and Z. Xu, “Applications of chitosan for improvement of quality and shelf life of foods: a review,” Journal of Food Science, vol. 72, no. 5, pp. R87–R100, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. T. Yu, H. Y. Li, and X. D. Zheng, “Synergistic effect of chitosan and Cryptococcus laurentii on inhibition of Penicillium expansum infections,” International Journal of Food Microbiology, vol. 114, no. 3, pp. 261–266, 2007. View at Publisher · View at Google Scholar · View at Scopus
  102. C. L. Wilson, A. El-Ghaouth, and M. E. Wisniewski, “Synergistic combinations of natural of compounds that control decay of fruits and vegetables and reduce contamination by food borne human pathogens,” Patent number US 20030113421 A1, 2003.
  103. C. L. Wilson and A. El-Ghaouth, “Biological coating with a protective and curative effect for the control of postharvest decay,” Patent number US 6,423,310 B1, 2002.
  104. A. El-Ghaouth, J. Arul, A. Asselin, and N. Benhamou, “Antifungal activity of chitosan on postharvest pathogens—induction of morphological and cytological alterations in Rhizopus-stolonifer,” Mycological Research, vol. 96, no. 9, pp. 769–779, 1992.
  105. A. El-Ghaouth, J. L. Smilanick, and C. L. Wilson, “Enhancement of the performance of Candida saitoana by the addition of glycolchitosan for the control of postharvest decay of apple and citrus fruit,” Postharvest Biology and Technology, vol. 19, no. 1, pp. 103–110, 2000. View at Publisher · View at Google Scholar · View at Scopus
  106. M. Eweis, S. S. Elkholy, and M. Z. Elsabee, “Antifungal efficacy of chitosan and its thiourea derivatives upon the growth of some sugar-beet pathogens,” International Journal of Biological Macromolecules, vol. 38, no. 1, pp. 1–8, 2006. View at Publisher · View at Google Scholar · View at Scopus
  107. M. E. I. Badawy, E. I. Rabea, T. M. Rogge et al., “Synthesis and fungicidal activity of new N,O-acyl chitosan derivatives,” Biomacromolecules, vol. 5, no. 2, pp. 589–595, 2004. View at Publisher · View at Google Scholar · View at Scopus
  108. E. I. Rabea, M. E. I. Badawy, T. M. Rogge et al., “Insecticidal and fungicidal activity of new synthesized chitosan derivatives,” Pest Management Science, vol. 61, no. 10, pp. 951–960, 2005. View at Publisher · View at Google Scholar · View at Scopus
  109. E. I. Rabea, M. E. I. Badawy, T. M. Rogge et al., “Enhancement of fungicidal and insecticidal activity by reductive alkylation of chitosan,” Pest Management Science, vol. 62, no. 9, pp. 890–897, 2006. View at Publisher · View at Google Scholar · View at Scopus
  110. E. I. Rabea, M. E. I. Badawy, W. Steurbaut, and C. V. Stevens, “In vitro assessment of N-(benzyl)chitosan derivatives against some plant pathogenic bacteria and fungi,” European Polymer Journal, vol. 45, no. 1, pp. 237–245, 2009. View at Publisher · View at Google Scholar
  111. M. E. I. Badawy, “Structure and antimicrobial activity relationship of quaternary N-alkyl chitosan derivatives against some plant pathogens,” Journal of Applied Polymer Science, vol. 117, no. 2, pp. 960–969, 2010. View at Publisher · View at Google Scholar
  112. R. Li, Z. Guo, and P. Jiang, “Synthesis, characterization, and antifungal activity of novel quaternary chitosan derivatives,” Carbohydrate Research, vol. 345, no. 13, pp. 1896–1900, 2010. View at Publisher · View at Google Scholar · View at Scopus
  113. D. Britto, S. P. Campana Filho, and O. B. G. Assis, “Chitosan-based coatings for lightly processed food,” in Proceedings of the 10th International Conference on Chitin and Chitosan Advances in Chitin Science, A. Domard, E. Guibal, and K. M. Vårum, Eds., vol. 9, Montpellier, France, 2006.