About this Journal Submit a Manuscript Table of Contents
International Journal of Carbohydrate Chemistry
Volume 2011 (2011), Article ID 749591, 13 pages
http://dx.doi.org/10.1155/2011/749591
Review Article

Endogenous and Exogenous CD1-Binding Glycolipids

1School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6012, New Zealand
2Malaghan Institute of Medical Research, P.O. Box 7060, Wellington 6242, New Zealand

Received 15 August 2010; Revised 24 December 2010; Accepted 9 February 2011

Academic Editor: Yuriy A. Knirel

Copyright © 2011 Janice M. H. Cheng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Pfeiffer, “Untersuchungen über das Choleragift,” Zeitschrift für Hygiene und Infektionskrankheiten, vol. 11, no. 1, pp. 393–412, 1892. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Landsteiner and P. Levine, “On individual differences in human blood,” Journal of Experimental Medicine, vol. 47, no. 5, pp. 757–775, 1928.
  3. C. R. H. Raetz and C. Whitfield, “Lipopolysaccharide endotoxins,” Annual Review of Biochemistry, vol. 71, pp. 635–700, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. T. J. Painter, W. M. Watkins, and W. T. J. Morgan, “Serologically active fucose-containing oligosaccharides isolated from human blood-group A and B substances,” Nature, vol. 206, no. 4984, pp. 594–597, 1965. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Calabi, J. M. Jarvis, L. Martin, and C. Milstein, “Two classes of CD1 genes,” European Journal of Immunology, vol. 19, no. 2, pp. 285–292, 1989. View at Scopus
  6. D. B. Moody, D. M. Zajonc, and I. A. Wilson, “Anatomy of CD1-lipid antigen complexes,” Nature Reviews Immunology, vol. 5, no. 5, pp. 387–399, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. D. B. Moody, B. B. Reinhold, M. R. Guy et al., “Structural requirements for glycolipid antigen recognition by CD1b- restricted T cells,” Science, vol. 278, no. 5336, pp. 283–286, 1997. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Kawano, J. Cui, Y. Koezuka et al., “CD1d-restricted and TCR-mediated activation of V(α)14 NKT cells by glycosylceramides,” Science, vol. 278, no. 5343, pp. 1626–1629, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. T. I. Prigozy, O. Naidenko, P. Qasba et al., “Glycolipid antigen processing for presentation by CD1d molecules,” Science, vol. 291, no. 5504, pp. 664–667, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. S. A. Porcelli, “Cutting glycolipids down to size,” Nature Immunology, vol. 2, no. 3, pp. 191–192, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. M. Salio, J. D. Silk, and V. Cerundolo, “Recent advances in processing and presentation of CD1 bound lipid antigens,” Current Opinion in Immunology, vol. 22, no. 1, pp. 81–88, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. D. Zhou, J. Mattner, C. Cantu et al., “Lysosomal glycosphingolipid recognition by NKT cells,” Science, vol. 306, no. 5702, pp. 1786–1789, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. S. Ahmad, “iGb3: to be or not to be?” Nature Reviews Immunology, vol. 7, no. 5, p. 325, 2007.
  14. E. M. Beckman, S. A. Porcelli, C. T. Morita, S. M. Behar, S. T. Furlong, and M. B. Brenner, “Recognition of lipid antigen by CD1-restricted αβ+ T cells,” Nature, vol. 372, no. 6507, pp. 691–694, 1994. View at Scopus
  15. K. Fischer, E. Scotet, M. Niemeyer et al., “Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 29, pp. 10685–10690, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. N. A. Parlane, M. Denis, W. B. Severn et al., “Phosphatidylinositol mannosides are efficient mucosal adjuvants,” Immunological Investigations, vol. 37, no. 2, pp. 129–142, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. P. A. Sieling, D. Chatterjee, S. A. Porcelli et al., “CD1-restricted T cell recognition of microbial lipoglycan antigens,” Science, vol. 269, no. 5221, pp. 227–230, 1995. View at Scopus
  18. J. Mattner, K. L. DeBord, N. Ismail et al., “Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections,” Nature, vol. 434, no. 7032, pp. 525–529, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. D. M. Zajonc, M. A. Elsliger, L. Teyton, and I. A. Wilson, “Crystal structure of CD1a in complex with a sulfatide self antigen at a resolution of 2.15 Å,” Nature Immunology, vol. 4, no. 8, pp. 808–815, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. A. Shamshiev, H. J. Gober, A. Donda, Z. Mazorra, L. Mori, and G. de Libero, “Presentation of the same glycolipid by different CD1 molecules,” Journal of Experimental Medicine, vol. 195, no. 8, pp. 1013–1021, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. D. M. Zajonc, I. Maricic, D. Wu et al., “Structural basis for CD1d presentation of a sulfatide derived from myelin and its implications for autoimmunity,” Journal of Experimental Medicine, vol. 202, no. 11, pp. 1517–1526, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. F. Compostella, L. Franchini, G. De Libero, G. Palmisano, F. Ronchetti, and L. Panza, “CD1a-binding glycosphingolipids stimulating human autoreactive T-cells: synthesis of a family of sulfatides differing in the acyl chain moiety,” Tetrahedron, vol. 58, no. 43, pp. 8703–8708, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Franchini, P. Matto, F. Ronchetti et al., “Synthesis and evaluation of human T cell stimulating activity of an α-sulfatide analogue,” Bioorganic and Medicinal Chemistry, vol. 15, no. 16, pp. 5529–5536, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. S. D. Gadola, N. R. Zaccai, K. Harlos et al., “Structure of human CDIb with bound ligands at 2.3 Å, a maze for alkyl chains,” Nature Immunology, vol. 3, no. 8, pp. 721–726, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. D. B. Moody, V. Briken, T. Y. Cheng et al., “Lipid length controls antigen entry into endosomal and nonendosomal pathways for CD1b presentation,” Nature Immunology, vol. 3, no. 5, pp. 435–442, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. A. J. Steck, A. K. Stalder, and S. Renaud, “Anti-myelin-associated glycoprotein neuropathy,” Current Opinion in Neurology, vol. 19, no. 5, pp. 458–463, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. A. Shamshiev, A. Donda, T. I. Prigozy et al., “The αβ T cell response to self-glycolipids shows a novel mechanism of CD1b loading and a requirement for complex oligosaccharides,” Immunity, vol. 13, no. 2, pp. 255–264, 2000. View at Scopus
  28. M. Sugimoto, M. Numata, K. Koike, Y. Nakahara, and T. Ogawa, “Total synthesis of gangliosides GM1 and GM2,” Carbohydrate Research, vol. 156, pp. C1–C5, 1986. View at Scopus
  29. S. K. Bhattacharya and S. J. Danishefsky, “A total synthesis of the methyl glycoside of ganglioside GM1,” Journal of Organic Chemistry, vol. 65, no. 1, pp. 144–151, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Shamshiev, A. Donda, I. Carena, L. Mori, L. Kappos, and G. De Libero, “Self glycolipids as T-cell autoantigens,” European Journal of Immunology, vol. 29, no. 5, pp. 1667–1675, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. H. K. Ishida, H. Ishida, M. Kiso, and A. Hasegawa, “Total synthesis of ganglioside GQ1b,” Carbohydrate Research, vol. 260, no. 2, pp. C1–C6, 1994. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Kuhn and H. Wiegandt, “Die Konstitution der Ganglio-N-tetraose und des Gangliosids GI,” Chemische Berichte, vol. 96, pp. 866–880, 1963.
  33. S. Ando and R. K. Yu, “Isolation and characterization of two isomers of brain tetrasialogangliosides,” Journal of Biological Chemistry, vol. 254, no. 23, pp. 12224–12229, 1979. View at Scopus
  34. P. Fredman, J. E. Mansson, L. Svennerholm, K. A. Karlsson, I. Pascher, and B. E. Samuelsson, “The structure of the tetrasialoganglioside from human brain,” FEBS Letters, vol. 110, no. 1, pp. 80–84, 1980. View at Publisher · View at Google Scholar
  35. A. Imamura, H. Ando, H. Ishida, and M. Kiso, “Ganglioside GQ1b: efficient total synthesis and the expansion to synthetic derivatives to elucidate its biological roles,” Journal of Organic Chemistry, vol. 74, no. 8, pp. 3009–3023, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. S. Ando, M. Isobe, and Y. Nagai, “High performance preparative column chromatography of lipids using a new porous silica, Iatrobeads. I. Separation of molecular species of sphingoglycolipids,” Biochimica et Biophysica Acta, vol. 424, no. 1, pp. 98–105, 1976. View at Scopus
  37. N. Kanda and S. Watanabe, “Gangliosides GD1b, GT1b, and GQ1b enhance IL-2 and IFN-γ production and suppress IL-4 and IL-5 production in phytohemagglutinin-stimulated human T cells,” Journal of Immunology, vol. 166, no. 1, pp. 72–80, 2001. View at Scopus
  38. W. A. Ernst, J. Maher, S. Cho et al., “Molecular interaction of CD1b with lipoglycan antigens,” Immunity, vol. 8, no. 3, pp. 331–340, 1998. View at Publisher · View at Google Scholar · View at Scopus
  39. T. Batuwangala, D. Shepherd, S. D. Gadola et al., “The crystal structure of human CD1b with a bound bacterial glycolipid,” Journal of Immunology, vol. 172, no. 4, pp. 2382–2388, 2004. View at Scopus
  40. M. Gilleron, S. Stenger, Z. Mazorra et al., “Diacylated sulfoglycolipids are novel Mycobacterial antigens stimulating CD1-restricted T cells during infection with Mycobacterium tuberculosis,” Journal of Experimental Medicine, vol. 199, no. 5, pp. 649–659, 2004. View at Publisher · View at Google Scholar · View at PubMed
  41. M. B. Goren, O. Brokl, B. C. Das, and E. Lederer, “Sulfolipid I of Mycobacterium tuberculosis, strain H37RV. Nature of the acyl substituents,” Biochemistry, vol. 10, no. 1, pp. 72–81, 1971. View at Scopus
  42. J. Guiard, A. Collmann, M. Gilleron et al., “Synthesis of diacylated trehalose sulfates: candidates for a tuberculosis vaccine,” Angewandte Chemie—International Edition, vol. 47, no. 50, pp. 9734–9738, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. J. Guiard, A. Collmann, L. F. Garcia-Alles et al., “Fatty acyl structures of Mycobacterium tuberculosis sulfoglycolipid govern T cell response,” Journal of Immunology, vol. 182, no. 11, pp. 7030–7037, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. D. Garzón, P. J. Bond, and J. D. Faraldo-Gómez, “Predicted structural basis for CD1c presentation of mycobacterial branched polyketides and long lipopeptide antigens,” Molecular Immunology, vol. 47, no. 2-3, pp. 253–260, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. D. B. Moody, T. Ulrichs, W. Mühlecker et al., “CD1c-mediated T-cell recognition of isoprenoid glycolipids in Mycobacterium tuberculosis infection,” Nature, vol. 404, no. 6780, pp. 884–888, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. J. F. Pennock, F. W. Hemming, and R. A. Morton, “Dolichol: a naturally occurring isoprenoid alcohol,” Nature, vol. 186, no. 4723, pp. 470–472, 1960. View at Publisher · View at Google Scholar · View at Scopus
  47. P. Low, G. Dallner, S. Mayor, S. Cohen, B. T. Chait, and A. K. Menon, “The mevalonate pathway in the bloodstream form of Trypanosoma brucei. Identification of dolichols containing 11 and 12 isoprene residues,” Journal of Biological Chemistry, vol. 266, no. 29, pp. 19250–19257, 1991. View at Scopus
  48. I. Matsunaga, A. Bhatt, D. C. Young et al., “Mycobacterium tuberculosis pks12 produces a novel polyketide presented by CD1c to T cells,” Journal of Experimental Medicine, vol. 200, no. 12, pp. 1559–1569, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. A. de Jong, E. C. Arce, T. Y. Cheng et al., “CD1c presentation of synthetic glycolipid antigens with foreign Alkyl branching motifs,” Chemistry and Biology, vol. 14, no. 11, pp. 1232–1242, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. D. Crich and V. Dudkin, “Confirmation of the connectivity of 4,8,12,16,20-pentamethylpentacosylphoshoryl β-D-mannopyranoside, an unusual β-mannosyl phosphoisoprenoid from Mycobacterium avium, through synthesis,” Journal of the American Chemical Society, vol. 124, no. 10, pp. 2263–2266, 2002. View at Publisher · View at Google Scholar · View at Scopus
  51. R. P. Van Summeren, D. B. Moody, B. L. Feringa, and A. J. Minnaard, “Total synthesis of enantiopure β-D-mannosyl phosphomycoketides from Mycobacterium tuberculosis,” Journal of the American Chemical Society, vol. 128, no. 14, pp. 4546–4547, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. K. Hiromatsu, C. C. Dascher, K. P. LeClair et al., “Induction of CD1-restricted immune responses in guinea pigs by immunization with mycobacterial lipid antigens,” Journal of Immunology, vol. 169, no. 1, pp. 330–339, 2002. View at Scopus
  53. D. M. Zajonc and M. Kronenberg, “CD1 mediated T cell recognition of glycolipids,” Current Opinion in Structural Biology, vol. 17, no. 5, pp. 521–529, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. D. Qiu and R. R. Schmidt, “Glycosyl imidates, 52. Synthesis of Globotriaosylceramide (Gb3) and Isoglobotriaosylceramide (isoGb3),” Liebigs Annalen der Chemie, vol. 1993, no. 3, pp. 217–224, 1992.
  55. N. Yin, X. Long, R. D. Goff et al., “Alpha anomers of iGb3 and Gb3 stimulate cytokine production by natural killer T cells,” ACS Chemical Biology, vol. 4, no. 3, pp. 191–197, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. R. J. Anderson, “The chemistry of the lipoids of tubercle bacilli. XIV. The occurrence of inosite in the phosphatide from human tubercle bacilli,” Journal of the American Chemical Society, vol. 52, no. 4, pp. 1607–1608, 1930. View at Scopus
  57. C. E. Ballou, E. Vilkas, and E. Lederer, “Structural studies on the myo-inositol phospholipids of Mycobacterium tuberculosis (var. bovis, strain BCG),” Journal of Biological Chemistry, vol. 238, no. 1, pp. 69–76, 1963. View at Scopus
  58. M. Gilleron, C. Ronet, M. Mempel, B. Monsarrat, G. Gachelin, and G. Puzo, “Acylation state of the phosphatidylinositol mannosides from Mycobacterium bovis Bacillus Calmette Guérin and ability to induce granuloma and recruit natural killer T cells,” Journal of Biological Chemistry, vol. 276, no. 37, pp. 34896–34904, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. H. De La Salle, S. Mariotti, C. Angenieux et al., “Immunology: assistance of microbial glycolipid antigen processing by CD1e,” Science, vol. 310, no. 5752, pp. 1321–1324, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. G. D. Ainge, N. A. Parlane, M. Denis et al., “Phosphatidylinositol mannoside ether analogues: ayntheses and interleukin-12-inducing properties,” Journal of Organic Chemistry, vol. 72, no. 14, pp. 5291–5296, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. X. Liu, B. L. Stocker, and P. H. Seeberger, “Total synthesis of phosphatidylinositol mannosides of Mycobacterium tuberculosis,” Journal of the American Chemical Society, vol. 128, no. 11, pp. 3638–3648, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. T. Natori, Y. Koezuka, and T. Higa, “Agelasphins, novel α-galactosylceramides from the marine sponge Agelas mauritianus,” Tetrahedron Letters, vol. 34, no. 35, pp. 5591–5592, 1993. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Morita, K. Motoki, K. Akimoto et al., “Structure-activity relationship of α-galactosylceramides against b16- bearing mice,” Journal of Medicinal Chemistry, vol. 38, no. 12, pp. 2176–2187, 1995. View at Publisher · View at Google Scholar · View at Scopus
  64. L. Van Kaer, “α-galactosylceramide therapy for autoimmune diseases: prospects and obstacles,” Nature Reviews Immunology, vol. 5, no. 1, pp. 31–42, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. D. I. Godfrey and S. P. Berzins, “Control points in NKT-cell development,” Nature Reviews Immunology, vol. 7, no. 7, pp. 505–518, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. G. T. Fan, Y. S. Pan, K. C. Lu et al., “Synthesis of α-galactosyl ceramide and the related glycolipids for evaluation of their activities on mouse splenocytes,” Tetrahedron, vol. 61, no. 7, pp. 1855–1862, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. O. Plettenburg, V. Bodmer-Narkevitch, and C. H. Wong, “Synthesis of α-galactosyl ceramide, a potent immunostimulatory agent,” Journal of Organic Chemistry, vol. 67, no. 13, pp. 4559–4564, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. D. Wu, M. Fujio, and C. H. Wong, “Glycolipids as immunostimulating agents,” Bioorganic and Medicinal Chemistry, vol. 16, no. 3, pp. 1073–1083, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. C. Angénieux, V. Fraisier, B. Maître et al., “The cellular pathway of CD1e in immature and maturing dendritic cells,” Traffic, vol. 6, no. 4, pp. 286–302, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus