About this Journal Submit a Manuscript Table of Contents
International Journal of Carbohydrate Chemistry
Volume 2013 (2013), Article ID 615124, 4 pages
http://dx.doi.org/10.1155/2013/615124
Research Article

Latent Fingerprint Enhancement Using Tripolyphosphate-Chitosan Microparticles

Department of Chemical and Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, West Yorkshire HD1 3DH, UK

Received 14 November 2012; Accepted 27 January 2013

Academic Editor: Thomas J. Heinze

Copyright © 2013 Issa M. A. Il Dueik and Gordon A. Morris. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Rinaudo, “Chitin and chitosan: properties and applications,” Progress in Polymer Science, vol. 31, no. 7, pp. 603–632, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. A. M. Dyer, M. Hinchcliffe, P. Watts et al., “Nasal delivery of insulin using novel chitosan based formulations: a comparative study in two animal models between simple chitosan formulations and chitosan nanoparticles,” Pharmaceutical Research, vol. 19, no. 7, pp. 998–1008, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. G. A. Morris, M. S. Kök, S. E. Harding, and G. G. Adams, “Polysaccharide drug delivery systems based on pectin and chitosan,” Biotechnology and Genetic Engineering Reviews, vol. 27, pp. 257–284, 2010.
  4. G. A. Morris, J. Castile, A. Smith, G. G. Adams, and S. E. Harding, “The effect of prolonged storage at different temperatures on the particle size distribution of tripolyphosphate (TPP)-chitosan nanoparticles,” Carbohydrate Polymers, vol. 84, no. 4, pp. 1430–1434, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. L. E. Chávez de Paz, A. Resin, K.A. Howard, D.S. Sutherland, and P.L. Wejse, “Antimicrobial effect of chitosan nanoparticles on Streptococcus mutans biofilms,” Applied and Environmental Microbiology, vol. 77, no. 11, pp. 3892–3895.
  6. S. Hornig and T. Heinze, “Efficient approach to design stable water-dispersible nanoparticles of hydrophobic cellulose esters,” Biomacromolecules, vol. 9, no. 5, pp. 1487–1492, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Ul Islam, K. F. Ahmed, A. Sugunan, and J. Dutta, “Forensic fingerprint enhancement using bioadhesive chitosan and gold nanoparticles,” in Proceedings of the 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE NEMS '07), pp. 411–415, January 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Dilag, H. Kobus, and A. V. Ellis, “Cadmium sulfide quantum dot/chitosan nanocomposites for latent fingermark detection,” Forensic Science International, vol. 187, no. 1–3, pp. 97–102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Anitha, N. Deepa, K. P. Chennazhi, S. V. Nair, H. Tamura, and R. Jayakumar, “Development of mucoadhesive thiolated chitosan nanoparticles for biomedical applications,” Carbohydrate Polymers, vol. 83, no. 1, pp. 66–73, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Nasti, N. M. Zaki, P. de Leonardis et al., “Chitosan/TPP and chitosan/TPP-hyaluronic acid nanoparticles: systematic optimisation of the preparative process and preliminary biological evaluation,” Pharmaceutical Research, vol. 26, pp. 1918–1930, 2009.
  11. Q. Gan, T. Wang, C. Cochrane, and P. McCarron, “Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery,” Colloids and Surfaces B, vol. 44, no. 2-3, pp. 65–73, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Hu, C. Pan, Y. Sun et al., “Optimization of fabrication parameters to produce chitosan-tripolyphosphate nanoparticles for delivery of tea catechins,” Journal of Agricultural and Food Chemistry, vol. 56, pp. 7451–7458, 2008.
  13. Y. Xu and Y. Du, “Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles,” International Journal of Pharmaceutics, vol. 250, pp. 215–226, 2005.
  14. H. Zhang, M. Oh, C. Allen, and E. Kumacheva, “Monodisperse chitosan nanoparticles for mucosal drug delivery,” Biomacromolecules, vol. 5, no. 6, pp. 2461–2468, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. M. L. Tsai, R. H. Chen, S. W. Bai, and W. Y. Chen, “The storage stability of chitosan/tripolyphosphate nanoparticles in a phosphate buffer,” Carbohydrate Polymers, vol. 84, no. 2, pp. 756–761, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. M. L. Tsai, S. W. Bai, and R. H. Chen, “Cavitation effects versus stretch effects resulted in different size and polydispersity of ionotropic gelation chitosan-sodium tripolyphosphate nanoparticle,” Carbohydrate Polymers, vol. 71, pp. 448–457, 2008.
  17. M. Luangtana-anan, P. Opanasopit, T. Ngawhirunpat et al., “Effect of chitosan salts and molecular weight on a nanoparticulate carrier for therapeutic protein,” Pharmaceutical Development and Technology, vol. 10, no. 2, pp. 189–196, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. E. S. K. Tang, M. Huang, and L. Y. Lim, “Ultrasonication of chitosan and chitosan nanoparticles,” International Journal of Pharmaceutics, vol. 265, pp. 103–114, 2003.