About this Journal Submit a Manuscript Table of Contents
International Journal of Chemical Engineering
Volume 2011 (2011), Article ID 592075, 6 pages
http://dx.doi.org/10.1155/2011/592075
Research Article

Synthesis and Structural Investigations of Ag-Added Ba T i O 𝟑 -CuO Mixed Oxide for C O 𝟐 Gas Sensing

Inorganic Chemistry Department, National Research Centre, Tahrir Street, Dokki, 12622 Cairo, Egypt

Received 29 March 2011; Revised 10 July 2011; Accepted 16 July 2011

Academic Editor: D. Yu. Murzin

Copyright © 2011 Ahmed Mohamed El-Sayed et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. D. Lee, “Environmental gas sensors,” IEEE Sensors Journal, vol. 1, no. 3, pp. 214–224, 2001. View at Scopus
  2. A. Mandelis and C. Christofiedes, Physics Chemistry and Technology of Solid State Gas Sensor Devices, Academic Press, Toronto, Canada, 1993.
  3. M. S. Lee and J. U. Meyer, “New process for fabricating CO2-sensing layers based on BaTiO3 and additives,” Sensors and Actuators, B, vol. 68, no. 1, pp. 293–299, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. D. H. Kim, J. Y. Yoon, H. C. Park, and K. H. Kim, “CO2-sensing characteristics of SnO2 thick film by coating lanthanum oxide,” Sensors and Actuators, B, vol. 62, no. 1, pp. 61–66, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Mizuno, T. Yoshioka, K. Kato, and M. Iwamoto, “CO2-sensing characteristics of SnO2 element modified by La2O3,” Sensors and Actuators B, vol. 13, no. 1–3, pp. 473–475, 1993. View at Scopus
  6. E. H. A. Diagne and M. Lumbreras, “Elaboration and characterization of tin oxide-lanthanum oxide mixed layers prepared by the electrostatic spray pyrolysis technique,” Sensors and Actuators, B, vol. 78, no. 1-3, pp. 98–105, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. A. M. El-Sayet, F. M. Ismail, and S. M. Yakout, “Electrical conductivity and sensitive characteristics of Ag-added BaTiO3-CuO mixed oxide for CO2 gas sensing,” Journal of Materials Science and Technology, vol. 27, no. 1, pp. 35–40, 2011. View at Publisher · View at Google Scholar
  8. B. Liao, Q. Wei, K. Wang, and Y. Liu, “Study on CuO-BaTiO3 semiconductor CO2 sensor,” Sensors and Actuators, B, vol. 80, no. 3, pp. 208–214, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Ishihara, K. Kometani, Y. Mizuhara, and Y. Takita, “Application of a mixed oxide capacitor to the selective carbon dioxide sensor,” Journal of the Electrochemical Society, vol. 139, no. 10, pp. 2881–2885, 1992. View at Scopus
  10. W. Chen and J. Zhang, “Ag nanoparticles hosted in monolithic mesoporous silica by thermal decomposition method,” Scripta Materialia, vol. 49, no. 4, pp. 321–325, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. B. V. L’vov and V. L. Ugolkov, “Kinetics and mechanism of free-surface decomposition of solid and melted AgNO3 and Cd(NO3)2 analyzed thermogravimetrically by the third-law method,” Thermochimica Acta, vol. 424, no. 1-2, pp. 7–13, 2004.
  12. R. T. Mara, G. B. B. M. Sutherland, and H. V. Tyrell, “Infrared spectrum of barium titanate,” Physical Review, vol. 96, no. 3, pp. 801–802, 1954. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Wang, Q. Lin, R. Zhou, and B. Xu, “Humidity sensors based on composite material of nano-BaTiO3 and polymer RMX,” Sensors and Actuators, B, vol. 81, no. 2-3, pp. 248–253, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Kliche and Z. V. Popovic, “Far-infrared spectroscopic investigations on CuO,” Physical Review B, vol. 42, no. 16, pp. 10060–10066, 1990. View at Publisher · View at Google Scholar · View at Scopus
  15. Z. Wang, Q. Liu, J. Yu, T. Wu, and G. Wang, “Surface structure and catalytic behavior of silica-supported copper catalysts prepared by impregnation and sol-gel methods,” Applied Catalysis A, vol. 239, no. 1-2, pp. 87–94, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Parodi, “Etude de quelques borates et de quelques oxydes dans l'infrarouge lointain,” Comptes Rendus, vol. 204, p. 1111, 1937.
  17. T. Ishihara, K. Kometani, Y. Mizuhara, and Y. Takita, “Mixed oxide capacitor of CuO—BaTiO3 as a new type CO2 gas sensor,” Journal of the American Ceramic Society, vol. 75, no. 3, pp. 613–618, 1992.
  18. D. Majumdar, H. D. Glicksman, and T. T. Kodas, “Generation and sintering characteristics of silver-copper (II) oxide composite powders made by spray pyrolysis,” Powder Technology, vol. 110, no. 1-2, pp. 76–81, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. Z. Jiao, F. Chen, R. Su, X. Huang, W. Liu, and J. Liu, “Study on the characteristics of Ag doped CuO-BaTiO3CO2 sensors,” Sensors, vol. 2, no. 9, pp. 366–373, 2002. View at Scopus