About this Journal Submit a Manuscript Table of Contents
International Journal of Chemical Engineering
Volume 2012 (2012), Article ID 193639, 16 pages
http://dx.doi.org/10.1155/2012/193639
Research Article

CFD Study of Industrial FCC Risers: The Effect of Outlet Configurations on Hydrodynamics and Reactions

1School of Chemical Engineering, University of Campinas, 500 Albert Einstein Avenue, 13083-970 Campinas, SP, Brazil
2PETROBRAS, 65 República do Chile Avenue, 20031-912 Rio de Janeiro, RJ, Brazil

Received 4 September 2012; Accepted 7 November 2012

Academic Editor: Jerzy Bałdyga

Copyright © 2012 Gabriela C. Lopes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Cheng, F. Wei, G. Yang, and J. Yong, “Inlet and outlet effects on flow patterns in gas-solid risers,” Powder Technology, vol. 98, no. 2, pp. 151–156, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. S. K. Gupta and F. Berruti, “Evaluation of the gas-solid suspension density in CFB risers with exit effects,” Powder Technology, vol. 108, no. 1, pp. 21–31, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. E. H. Van Der Meer, R. B. Thorpe, and J. F. Davidson, “Flow patterns in the square cross-section riser of a circulating fluidised bed and the effect of riser exit design,” Chemical Engineering Science, vol. 55, no. 19, pp. 4079–4099, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. A. T. Harris, J. F. Davidson, and R. B. Thorpe, “The influence of the riser exit on the particle residence time distribution in a circulating fluidised bed riser,” Chemical Engineering Science, vol. 58, no. 16, pp. 3669–3680, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. C. W. Chan, A. Brems, S. Mahmoudi et al., “PEPT study of particle motion for different riser exit geometries,” Particuology, vol. 8, no. 6, pp. 623–630, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. X. Wang, L. Liao, B. Fan et al., “Experimental validation of the gas-solid flow in the CFB riser,” Fuel Processing Technology, vol. 91, no. 8, pp. 927–933, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. M. T. Lim, S. Pang, and J. Nijdam, “Investigation of solids circulation in a cold model of a circulating fluidized bed,” Powder Technology, vol. 226, pp. 57–67, 2012.
  8. J. W. Chew, R. Hays, J. G. Findlay et al., “Reverse core-annular flow of Geldart Group B particles in risers,” Powder Technology, vol. 221, pp. 1–12, 2012.
  9. T. Pugsley, D. Lapointe, B. Hirschberg, and J. Werther, “Exit effects in circulating fluidized bed risers,” Canadian Journal of Chemical Engineering, vol. 75, no. 6, pp. 1001–1010, 1997. View at Scopus
  10. G. Van engelandt, G. J. Heynderickx, J. De Wilde, and G. B. Marin, “Experimental and computational study of T- and L-outlet effects in dilute riser flow,” Chemical Engineering Science, vol. 66, no. 21, pp. 5024–5044, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. J. De Wilde, G. B. Marin, and G. J. Heynderickx, “The effects of abrupt T-outlets in a riser: 3D simulation using the kinetic theory of granular flow,” Chemical Engineering Science, vol. 58, no. 3–6, pp. 877–885, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Chalermsinsuwan, P. Kuchonthara, and P. Piumsomboon, “Effect of circulating fluidized bed reactor riser geometries on chemical reaction rates by using CFD simulations,” Chemical Engineering and Processing, vol. 48, no. 1, pp. 165–177, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. A. K. Das, J. De Wilde, G. J. Heynderickx, and G. B. Marin, “CFD simulation of dilute phase gas-solid riser reactors—part II: simultaneous adsorption of SO2-NOx from flue gases,” Chemical Engineering Science, vol. 59, no. 1, pp. 187–200, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Ali, S. Rohani, and J. P. Corriou, “Modelling and control of a riser type fluid catalytic cracking (FCC) unit,” Chemical Engineering Research and Design, vol. 75, no. 4, pp. 401–412, 1997. View at Scopus
  15. I. S. Han and C. B. Chung, “Dynamic modeling and simulation of a fluidized catalytic cracking process—part I: process modeling,” Chemical Engineering Science, vol. 56, no. 5, pp. 1951–1971, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. I. S. Han and C. B. Chung, “Dynamic modeling and simulation of a fluidized catalytic cracking process—part II: property estimation and simulation,” Chemical Engineering Science, vol. 56, no. 5, pp. 1973–1990, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. S. V. Nayak, S. L. Joshi, and V. V. Ranade, “Modeling of vaporization and cracking of liquid oil injected in a gas-solid riser,” Chemical Engineering Science, vol. 60, no. 22, pp. 6049–6066, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. J. S. Ahari, A. Farshi, and K. Forsat, “A mathematical modeling of the riser reactor in industrial FCC unit,” Petroleum and Coal, vol. 50, no. 2, pp. 15–24, 2008.
  19. F. Van Landeghem, D. Nevicato, I. Pitault et al., “Fluid catalytic cracking: modelling of an industrial riser,” Applied Catalysis A, vol. 138, no. 2, pp. 381–405, 1996. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Derouin, D. Nevicato, M. Forissier, G. Wild, and J. R. Bernard, “Hydrodynamics of riser units and their impact on FCC operation,” Industrial and Engineering Chemistry Research, vol. 36, no. 11, pp. 4504–4515, 1997. View at Scopus
  21. R. Deng, F. Wei, T. Liu, and Y. Jin, “Radial behavior in riser and downer during the FCC process,” Chemical Engineering and Processing, vol. 41, no. 3, pp. 259–266, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. G. C. Lopes, L. M. Rosa, M. Mori, J. R. Nunhez, and W. P. Martignoni, “Three-dimensional modeling of fluid catalytic cracking industrial riser flow and reactions,” Computers and Chemical Engineering, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. K. N. Theologos and N. C. Markatos, “Advanced modeling of fluid catalytic cracking riser-type reactors,” AIChE Journal, vol. 39, no. 6, pp. 1007–1017, 1993. View at Scopus
  24. K. N. Theologos, A. I. Lygeros, and N. C. Markatos, “Feedstock atomization effects on FCC riser reactors selectivity,” Chemical Engineering Science, vol. 54, no. 22, pp. 5617–5625, 1999. View at Scopus
  25. A. Gupta and D. S. Rao, “Model for the performance of a fluid catalytic cracking (FCC) riser reactor: effect of feed atomization,” Chemical Engineering Science, vol. 56, no. 15, pp. 4489–4503, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. G. C. Lopes, L. M. Da Rosa, M. Mori, J. R. Nunhez, and W. P. Martignoni, “The importance of using three-phase 3-D model in the simulation of industrial FCC risers,” Chemical Engineering Transactions, vol. 24, pp. 1417–1422, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Farag, A. Blasetti, and H. De Lasa, “Catalytic cracking with FCCT loaded with tin metal traps: adsorption constants for gas oil, gasoline, and light gases,” Industrial and Engineering Chemistry Research, vol. 33, no. 12, pp. 3131–3140, 1994. View at Scopus
  28. S. B. Schut, E. H. Van Der Meer, J. F. Davidson, and R. B. Thorpe, “Gas-solids flow in the diffuser of a circulating fluidised bed riser,” Powder Technology, vol. 111, no. 1-2, pp. 94–103, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. L. S. Lee, Y. W. Chen, and T. N. Huang, “Four-lump kinetic model for fluid catalytic cracking process,” Canadian Journal of Chemical Engineering, vol. 67, no. 4, pp. 615–619, 1989. View at Scopus
  30. J. A. Juárez, F. L. Isunza, E. A. Rodrìguez, and J. C. M. Mayorga, “A strategy for kinetic parameter estimation in the fluid catalytic cracking process,” Industrial & Engineering Chemistry Research, vol. 36, pp. 5170–5174, 1997.
  31. S. A. Morsi and A. J. Alexander, “An investigation of particle trajectories in two-phase flow systems,” The Journal of Fluid Mechanics, vol. 55, no. 2, pp. 193–208, 1972.
  32. Ansys Inc. (US), ANSYS FLUENT 12. 0—Theory Guide, Ansys, 2009.
  33. W. Zhang, Y. Tung, and F. Johnsson, “Radial voidage profiles in fast fluidized beds of different diameters,” Chemical Engineering Science, vol. 46, no. 12, pp. 3045–3052, 1991. View at Scopus
  34. J. H. Pärssinen and J. X. Zhu, “Particle velocity and flow development in a long and high-flux circulating fluidized bed riser,” Chemical Engineering Science, vol. 56, no. 18, pp. 5295–5303, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. J. C. S. C. Bastos, L. M. Rosa, M. Mori, F. Marini, and W. P. Martignoni, “Modelling and simulation of a gas-solids dispersion flow in a high-flux circulating fluidized bed (HFCFB) riser,” Catalysis Today, vol. 130, no. 2–4, pp. 462–470, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. K. N. Theologos, I. D. Nikou, A. I. Lygeros, and N. C. Markatos, “Simulation and design of fluid-catalytic cracking riser-type reactors,” Computers and Chemical Engineering, vol. 20, no. 1, pp. S757–S762, 1996. View at Scopus
  37. J. Gao, C. Xu, S. Lin, G. Yang, and Y. Guo, “Simulations of gas-liquid-solid 3-phase flow and reaction in FCC riser reactors,” AIChE Journal, vol. 47, no. 3, pp. 677–692, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. W. Martignoni and H. I. De Lasa, “Heterogeneous reaction model for FCC riser units,” Chemical Engineering Science, vol. 56, no. 2, pp. 605–612, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. D. L. Liu and J. M. Han, “Evaluation on commercial application of LPC type nozzle for FCC feed,” Process Engineering Resources, vol. 22, article 49, 1992.
  40. A. T. Harris, J. F. Davidson, and R. B. Thorpe, “Influence of exit geometry in circulating fluidized-bed risers,” AIChE Journal, vol. 49, no. 1, pp. 52–64, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. M. P. Martin, P. Turlier, J. R. Bernard, and G. Wild, “Gas and solid behavior in cracking circulating fluidized beds,” Powder Technology, vol. 70, no. 3, pp. 249–258, 1992. View at Scopus
  42. X. Wu, F. Jiang, X. Xu, and Y. Xiao, “CFD simulation of smooth and T-abrupt exits in circulating fluidized bed risers,” Particuology, vol. 8, no. 4, pp. 343–350, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Liu and J. N. Tilton, “Spatial distributions of mean age and higher moments in steady continuous flows,” AIChE Journal, vol. 56, no. 10, pp. 2561–2572, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. F. Wang, Q. Marashdeh, A. Wang, and L. Fan, “Electrical capacitance volume tomography imaging of three-dimensional flow structures and solids concentration distributions in a riser and a bend of a gas-solid circulating fluidized bed,” Industrial & Engineering Chemistry Research, vol. 51, pp. 10968–10976, 2012.