About this Journal Submit a Manuscript Table of Contents
International Journal of Chemical Engineering
Volume 2012 (2012), Article ID 528290, 11 pages
http://dx.doi.org/10.1155/2012/528290
Research Article

Enhancing Ion Transfer in Overlimiting Electrodialysis of Dilute Solutions by Modifying the Surface of Heterogeneous Ion-Exchange Membranes

Membrane Institute, Kuban State University, Krasnodar 350040, Russia

Received 30 March 2012; Accepted 24 May 2012

Academic Editor: Tongwen Xu

Copyright © 2012 Natalia Pismenskaya et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Zhang, K. Ghyselbrecht, B. Meesschaert, L. Pinoy, and B. Van der Bruggen, “Electrodialysis on RO concentrate to improve water recovery in wastewater reclamation,” Journal of Membrane Science, vol. 378, no. 1-2, pp. 101–110, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Oren, E. Korngold, N. Daltrophe et al., “Pilot studies on high recovery BWRO-EDR for near zero liquid discharge approach,” Desalination, vol. 261, no. 3, pp. 321–330, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Wood, J. Gifford, J. Arba, and M. Shaw, “Production of ultrapure water by continuous electrodeionization,” Desalination, vol. 250, no. 3, pp. 973–976, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. V. I. Zabolotsky, V. V. Nikonenko, N. D. Pismenskaya, and A. G. Istoshin, “Electrodialysis technology for deep demineralization of surface and ground water,” Desalination, vol. 108, no. 1–3, pp. 179–181, 1997. View at Scopus
  5. Y. Tanaka, R. Ehara, S. Itoi, and T. Goto, “Ion-exchange membrane electrodialytic salt production using brine discharged from a reverse osmosis seawater desalination plant,” Journal of Membrane Science, vol. 222, no. 1-2, pp. 71–86, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Strathmann, “Electrodialysis, a mature technology with a multitude of new applications,” Desalination, vol. 264, no. 3, pp. 268–288, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Tanaka, Ion Exchange Membranes: Fundamentals and Applications, vol. 12 of Membrane Science and Technology, Elsevier, Amsterdam, The Netherlands, 2007.
  8. K. S. Spiegler, “Polarization at ion exchange membrane-solution interfaces,” Desalination, vol. 9, no. 4, pp. 367–385, 1971. View at Scopus
  9. P. Długołecki, B. Anet, S. J. Metz, K. Nijmeijer, and M. Wessling, “Transport limitations in ion exchange membranes at low salt concentrations,” Journal of Membrane Science, vol. 346, no. 1, pp. 163–171, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. V. V. Nikonenko, N. D. Pismenskaya, E. I. Belova et al., “Intensive current transfer in membrane systems: modelling, mechanisms and application in electrodialysis,” Advances in Colloid and Interface Science, vol. 160, no. 1-2, pp. 101–123, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. I. Rubinstein and B. Zaltzman, “Electro-osmotically induced convection at a permselective membrane,” Physical Review E, vol. 62, no. 2, pp. 2238–2251, 2000. View at Scopus
  12. J. Balster, M. H. Yildirim, D. F. Stamatialis et al., “Morphology and microtopology of cation-exchange polymers and the origin of the overlimiting current,” Journal of Physical Chemistry B, vol. 111, no. 9, pp. 2152–2165, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. S. S. Dukhin, “Electrokinetic phenomena of the second kind and their applications,” Advances in Colloid and Interface Science, vol. 35, no. C, pp. 173–196, 1991. View at Scopus
  14. N. A. Mishchuk and P. V. Takhistov, “Electroosmosis of the second kind,” Colloids and Surfaces A, vol. 95, no. 2-3, pp. 119–131, 1995. View at Scopus
  15. N. A. Mishchuk, “Concentration polarization of interface and non-linear electrokinetic phenomena,” Advances in Colloid and Interface Science, vol. 160, no. 1-2, pp. 16–39, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. S. S. Dukhin and N. A. Mishchuk, “Intensification of electrodialysis based on electroosmosis of the second kind,” Journal of Membrane Science, vol. 79, no. 2-3, pp. 199–210, 1993. View at Publisher · View at Google Scholar · View at Scopus
  17. S. J. Kim, S. H. Ko, K. H. Kang, and J. Han, “Direct seawater desalination by ion concentration polarization,” Nature Nanotechnology, vol. 5, no. 4, pp. 297–301, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. E. D. Belashova, N. A. Melnik, N. D. Pismenskaya, et al., “Overlimiting mass transfer through cation-exchange membranes modified by NAFION film and carbon nanotubes,” Electrochimica Acta, vol. 59, pp. 412–423, 2012.
  19. N. D. Pismenskaya, V. V. Nikonenko, N. A. Melnik, et al., “Evolution with time of hydrophobicity and microrelief of a cation-exchange membrane surface and its impact on overlimiting mass transfer,” The Journal of Physical Chemistry B, vol. 116, no. 7, pp. 2145–2161, 2012.
  20. M. Z. Bazant and O. I. Vinogradova, “Tensorial hydrodynamic slip,” Journal of Fluid Mechanics, vol. 613, pp. 125–134, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. N. D. Pismenskaya, E. I. Belova, V. V. Nikonenko et al., “Lower rate of H+(OH-) ions generation at an anion-exchange membrane in electrodialysis,” Desalination and Water Treatment, vol. 21, no. 1–3, pp. 109–114, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. E. I. Belova, G. Y. Lopatkova, N. D. Pismenskaya, V. V. Nikonenko, C. Larchet, and G. Pourcelly, “Effect of anion-exchange membrane surface properties on mechanisms of overlimiting mass transfer,” Journal of Physical Chemistry B, vol. 110, no. 27, pp. 13458–13469, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Z. Nefedova, Z. V. Klimov, G. S. Sapozhnikov, and Katalog, “Ionitovye membrany” (Russian), M: NIITEKhIM, 1977.
  24. R. Simons, “Electric field effects on proton transfer between ionizable groups and water in ion exchange membranes,” Electrochimica Acta, vol. 29, no. 2, pp. 151–158, 1984. View at Scopus
  25. V. I. Zabolotsky, N. V. Sheldeshov, and N. P. Gnusin, “Dissociation of water molecules in systems with ion-exchange membranes,” Russian Chemical Reviews, vol. 57, pp. 801–808, 1988.
  26. N. D. Pismenskaya, Y. A. Fedotov, V. V. Nikonenko, et al., Patent 2008141949 Russian Federation, B 01D71/60 (2006.01), B01D7/06 (2006.01). Method of ion exchange membrane preparation, Filing date 22.10.2008, Issue date 27.04.2010.
  27. N. P. Berezina, S. V. Timofeev, and N. A. Kononenko, “Effect of conditioning techniques of perfluorinated sulphocationic membranes on their hydrophylic and electrotransport properties,” Journal of Membrane Science, vol. 209, no. 2, pp. 509–518, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. N. P. Berezina, N. A. Kononenko, O. A. Dyomina, and N. P. Gnusin, “Characterization of ion-exchange membrane materials: properties vs structure,” Advances in Colloid and Interface Science, vol. 139, no. 1-2, pp. 3–28, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. E. V. Laktionov, N. D. Pismenskaya, V. V. Nikonenko, and V. I. Zabolotsky, “Method of electrodialysis stack testing with the feed solution concentration regulation,” Desalination, vol. 151, no. 2, pp. 101–116, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. V. V. Nikonenko, N. D. Pismenskaya, A. G. Istoshin, V. I. Zabolotsky, and A. A. Shudrenko, “Description of mass transfer characteristics of ED and EDI apparatuses by using the similarity theory and compartmentation method,” Chemical Engineering and Processing: Process Intensification, vol. 47, no. 7, pp. 1118–1127, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. N. V. Sheldeshov, V. V. Ganych, and V. I. Zabolotskii, “Transport number of salt ions and water dissociation products in cation and anion-exchange membranes,” Soviet Electrochemistry, vol. 23, pp. 11–15, 1991.
  32. N. P. Gnusin, N. P. Berezina, N. A. Kononenko, and O. A. Dyomina, “Transport structural parameters to characterize ion exchange membranes,” Journal of Membrane Science, vol. 243, no. 1-2, pp. 301–310, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. V. I. Zabolotsky and V. V. Nikonenko, “Effect of structural membrane inhomogeneity on transport properties,” Journal of Membrane Science, vol. 79, no. 2-3, pp. 181–198, 1993. View at Publisher · View at Google Scholar · View at Scopus
  34. V. V. Nikonenko, N. D. Pis'menskaya, and E. I. Volodina, “Rate of generation of ions H+ and OH- at the ion-exchange membrane/dilute solution interface as a function of the current density,” Russian Journal of Electrochemistry, vol. 41, no. 11, pp. 1205–1210, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. I. Rubinstein and B. Zaltzman, “Extended space charge in concentration polarization,” Advances in Colloid and Interface Science, vol. 159, no. 2, pp. 117–129, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. M. A.-K. Urtenov, E. V. Kirillova, N. M. Seidova, and V. V. Nikonenko, “Decoupling of the Nernst-Planck and Poisson equations. Application to a membrane system at overlimiting currents,” Journal of Physical Chemistry B, vol. 111, no. 51, pp. 14208–14222, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. K. S. Spiegler, “Transport processes in ionic membranes,” Transactions of the Faraday Society, vol. 54, pp. 1408–1428, 1958. View at Scopus
  38. A. M. Peers, “Membrane phenomena,” Discussions of the Faraday Society, vol. 21, pp. 124–125, 1956.
  39. F. G. Helfferich, Ion Exchange, McGraw-Hill, New York, NY, USA, 1962.
  40. J. S. Newman, Electrochemical Systems, Prentice Englewood Cliffs, New York, NY ,USA, 1973.
  41. M. A. Lévêque, Les Lois de la Transmission de Chaleur par Convection, vol. 12-13 of Annales des Mines, Memoires, 1928.
  42. R. A. Robinson and R. H. Stokes, Electrolyte Solutions, Butterworths, London, UK, 1968.
  43. V. I. Zabolotsky, V. V. Nikonenko, N. D. Pismenskaya et al., “Coupled transport phenomena in overlimiting current electrodialysis,” Separation and Purification Technology, vol. 14, no. 1–3, pp. 255–267, 1998. View at Publisher · View at Google Scholar · View at Scopus
  44. J. H. Choi, H. J. Lee, and S. H. Moon, “Effects of electrolytes on the transport phenomena in a cation-exchange membrane,” Journal of Colloid and Interface Science, vol. 238, no. 1, pp. 188–195, 2001. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. Tanaka, “Water dissociation reaction generated in an ion exchange membrane,” Journal of Membrane Science, vol. 350, no. 1-2, pp. 347–360, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Mafé, P. Ramírez, and A. Alcaraz, “Electric field-assisted proton transfer and water dissociation at the junction of a fixed-charge bipolar membrane,” Chemical Physics Letters, vol. 294, no. 4-5, pp. 406–412, 1998. View at Scopus