About this Journal Submit a Manuscript Table of Contents
International Journal of Chemical Engineering
Volume 2012 (2012), Article ID 569463, 15 pages
http://dx.doi.org/10.1155/2012/569463
Research Article

Effect of Contaminants on the Gas Holdup and Mixing in Internal Airlift Reactors Equipped with Microbubble Generator

Multiphase Mixing and Separations Research Laboratory, Department of Process Engineering and Applied Sciences, Dalhousie University, Halifax, NS, Canada B3J 2X4

Received 6 June 2012; Accepted 27 August 2012

Academic Editor: Diego Gómez-Díaz

Copyright © 2012 Surya K. Pallapothu and Adel M. Al Taweel. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Martín, F. J. Montes, and M. A. Galán, “Theoretical modelling of the effect of surface active species on the mass transfer rates in bubble column reactors,” Chemical Engineering Journal, vol. 155, no. 1-2, pp. 272–284, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Vázquez, G. Antorrena, and J. M. Navaza, “Influence of surfactant concentration and chain length on the absorption of CO2 by aqueous surfactant solutions in the presence and absence of induced Marangoni effect,” Industrial and Engineering Chemistry Research, vol. 39, no. 4, pp. 1088–1094, 2000. View at Scopus
  3. S. S. Alves, S. P. Orvalho, and J. M. T. Vasconcelos, “Effect of bubble contamination on rise velocity and mass transfer,” Chemical Engineering Science, vol. 60, no. 1, pp. 1–9, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Álvarez, D. Gómez-Díaz, J. M. Navaza, and B. Sanjurjo, “Continuous removal of carbon dioxide by absorption employing a bubble column,” Chemical Engineering Journal, vol. 137, no. 2, pp. 251–256, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Gómez-Díaz, J. M. Navaza, and B. Sanjurjo, “Gas-liquid interfacial area in the presence of different chain length surfactants,” Industrial and Engineering Chemistry Research, vol. 48, no. 12, pp. 5894–5900, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Hebrard, J. Zeng, and K. Loubiere, “Effect of surfactants on liquid side mass transfer coefficients: a new insight,” Chemical Engineering Journal, vol. 148, no. 1, pp. 132–138, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. M. K. Moraveji, M. M. Pasand, R. Davarnejad, and Y. Chisti, “Effects of surfactants on hydrodynamics and mass transfer in a split-cylinder airlift reactor,” The Canadian Journal of Chemical Engineering, vol. 90, no. 1, pp. 93–99, 2012. View at Publisher · View at Google Scholar
  8. M. Jamnongwong, K. Loubiere, N. Dietrich, and G. Hébrard, “Experimental study of oxygen diffusion coefficients in clean water containing salt, glucose or surfactant: consequences on the liquid-side mass transfer coefficients,” Chemical Engineering Journal, vol. 165, no. 3, pp. 758–768, 2010.
  9. M. Zlokarnik, “Tower-shaped reactors for aerobic biological waste water treatment,” in Biotechnology, M. Zlokarnik and H. Brauer, Eds., pp. 537–69., 1985.
  10. A. M. Al Taweel and Y. H. Cheng, “Effect of surface tension on gas/liquid contacting in a mechanically-agitated tank with stator,” Chemical Engineering Research and Design, vol. 73, no. 6, pp. 654–660, 1995. View at Scopus
  11. S. Bordel, R. Mato, and S. Villaverde, “Modeling of the evolution with length of bubble size distributions in bubble columns,” Chemical Engineering Science, vol. 61, no. 11, pp. 3663–3673, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Podila, A. M. Al Taweel, M. Koksal, A. Troshko, and Y. P. Gupta, “CFD simulation of gas-liquid contacting in tubular reactors,” Chemical Engineering Science, vol. 62, no. 24, pp. 7151–7162, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Miura and O. Vinogradov, “The effect of probability of coalescence on the evolution of bubble sizes in a turbulent pipeline flow: a numerical study,” Computers and Chemical Engineering, vol. 32, no. 6, pp. 1257–1264, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. A. A. Mouza, G. K. Dalakoglou, and S. V. Paras, “Effect of liquid properties on the performance of bubble column reactors with fine pore spargers,” Chemical Engineering Science, vol. 60, no. 5, pp. 1465–1475, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. J. H. J. Kluytmans, B. G. M. Van Wachem, B. F. M. Kuster, and J. C. Schouten, “Gas holdup in a slurry bubble column: influence of electrolyte and carbon particles,” Industrial and Engineering Chemistry Research, vol. 40, no. 23, pp. 5326–5333, 2001. View at Scopus
  16. I. M. Šijački, M. S. Tokic, P. S. Kojic et al., “Sparger type influence on the hydrodynamics of the draft tube airlift reactor with diluted alcohol solutions,” Industrial & Engineering Chemistry Research, vol. 50, no. 6, pp. 3580–3591, 2011.
  17. J. F. Walter and H. W. Blanch, “Bubble break-up in gas-liquid bioreactors: break-up in turbulent flows,” The Chemical Engineering Journal, vol. 32, no. 1, pp. B7–B17, 1986. View at Scopus
  18. M. Asgharpour, M. R. Mehrnia, and N. Mostoufi, “Effect of surface contaminants on oxygen transfer in bubble column reactors,” Biochemical Engineering Journal, vol. 49, no. 3, pp. 351–360, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. I. M. Šijački, R. R. Čolović, D. L. Petrović, M. N. Tekić, and M. S. Durić, “Diluted alcohol solutions in bubble columns and draft tube airlift reactors with a single orifice sparger: experiments and simple correlations,” Journal of Chemical Technology and Biotechnology, vol. 85, no. 1, pp. 39–49, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. N. E. Azher, B. Gourich, C. Vial et al., “Influence of alcohol addition on gas hold-up, liquid circulation velocity and mass transfer coefficient in a split-rectangular airlift bioreactor,” Biochemical Engineering Journal, vol. 23, no. 2, pp. 161–167, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. W. A. Al-Masry and A. R. Dukkan, “The role of gas disengagement and surface active agents on hydrodynamic and mass transfer characteristics of airlift reactors,” Chemical Engineering Journal, vol. 65, no. 3, pp. 263–271, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. J. M. T. Vasconcelos, J. M. L. Rodrigues, S. C. P. Orvalho, S. S. Alves, R. L. Mendes, and A. Reis, “Effect of contaminants on mass transfer coefficients in bubble column and airlift contactors,” Chemical Engineering Science, vol. 58, no. 8, pp. 1431–1440, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. K. C. Ruthiya, J. Van Der Schaaf, B. F. M. Kuster, and J. C. Schouten, “Influence of particles and electrolyte on gas hold-up and mass transfer in a slurry bubble column,” International Journal of Chemical Reactor Engineering, vol. 4, pp. 1–37, 2006. View at Scopus
  24. M. D. Bredwell and R. M. Worden, “Mass-transfer properties of microbubbles. 1. Experimental studies,” Biotechnology Progress, vol. 14, no. 1, pp. 31–38, 1998. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Yasuda, Y. Wang, K. Haneda et al., “Development of airlift bubble column dispersed with micro-bubbles,” Canadian Journal of Chemical Engineering, vol. 88, no. 4, pp. 518–522, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. M. K. H. Al-Mashhadani, H. C. H. Bandulasena, and W. B. Zimmerman, “CO2 mass transfer induced through an airlift loop by a microbubble cloud generated by fluidic oscillation,” Industrial & Engineering Chemistry Research, vol. 51, no. 4, pp. 1864–1877, 2012. View at Publisher · View at Google Scholar
  27. W. B. Zimmerman, B. N. Hewakandamby, V. Tesar, H. C. H. Bandulasena, and O. A. Omotowa, “On the design and simulation of an airlift loop bioreactor with microbubble generation by fluidic oscillation,” Food and Bioproducts Processing C, vol. 87, no. 3, pp. 215–227, 2009. View at Publisher · View at Google Scholar
  28. Y. Bando, T. Yoshimatsui, W. Luo et al., “Flow characteristics in cocurrent upflow bubble column dispersed with micro-bubbles,” Journal of Chemical Engineering of Japan, vol. 41, no. 7, pp. 562–567, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Bando, T. Yoshimatsu, Y. Wang, K. Yasuda, T. Sugie, and T. Asai, “Influence of micro-bubble on ozone-decomposition of excess sludge,” Japanese Journal of Multiphase Flow, vol. 3, pp. 51–57, 2008. View at Publisher · View at Google Scholar
  30. L. B. Chu, X. H. Xing, A. F. Yu, X. L. Sun, and B. Jurcik, “Enhanced treatment of practical textile wastewater by microbubble ozonation,” Process Safety and Environmental Protection, vol. 86, no. 5, pp. 389–393, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Vial, S. Poncin, G. Wild, and N. Midoux, “A simple method for regime identification and flow characterisation in bubble columns and airlift reactors,” Chemical Engineering and Processing, vol. 40, no. 2, pp. 135–151, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. B. Gourich, C. Vial, A. H. Essadki, F. Allam, M. B. Soulami, and M. Ziyad, “Identification of flow regimes and transition points in a bubble column through analysis of differential pressure signal—influence of the coalescence behavior of the liquid phase,” Chemical Engineering and Processing, vol. 45, no. 3, pp. 214–223, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. A. M. Al Taweel, J. J. Luo, and J. Wang, “Dynamic spargers: a novel approach to intensifying gas/liquid contacting operations,” in Proceedings of the 5th International Process Intensification Conference, A. Stankiewicz, Ed., pp. 91–106, BHR, Cranfield, UK, 2003.
  34. H. Kawashima, A. Figiwara, Y. Saitoh, K. Hishidah, and Y. Kodama, “Experimental study of drag reduction by microbubble: laser measurements and microbubble generator,” in Proceedings of the 6th Symposium on Smart Control of Turbulence, Tokyo, Japan, March 2005.
  35. A. Stankiewicz, “Process-intensification: a European perspective,” in Proceedings of the 6th International Conference on Process Intensification, Delft, The Netherlands, 2006.
  36. A. M. Al Taweel, A. M. Ramadan, M. R. Moharam, S. M. El Mofty, and M. T. Ityokumbul, “Effect of honeycomb inserts on axial mixing in bubble columns,” Chemical Engineering Research and Design, vol. 74, no. 4, pp. 456–462, 1996. View at Scopus
  37. A. M. Al Taweel, A. Idhbeaa, and A. Ghanem, “Effect of electrolytes on inter-phase mass transfer in microbubble-sparged airlift reactors,” in Proceedings of the 9th World Congress of Chemical Engineering (WCCE '09), Seoul, Republic of Korea, August 2013.
  38. R. S. Nicol and J. F. Davidson, “Effect of surfactants on the gas hold-up in circulating bubble columns,” Chemical Engineering Research and Design, vol. 66, no. 2, pp. 159–164, 1988. View at Scopus
  39. J. B. Snape, J. Zahradník, M. Fialová, and N. H. Thomas, “Liquid-phase properties and sparger design effects in an external-loop airlift reactor,” Chemical Engineering Science, vol. 50, no. 20, pp. 3175–3186, 1995. View at Scopus
  40. J. C. Merchuk, A. Contreras, F. García, and E. Molina, “Studies of mixing in a concentric tube airlift bioreactor with different spargers,” Chemical Engineering Science, vol. 53, no. 4, pp. 709–719, 1998. View at Publisher · View at Google Scholar · View at Scopus
  41. B. R. Poulsen and J. J. L. Iversen, “Membrane sparger in bubble column, airlift, and combined membrane-ring sparger bioreactors,” Biotechnology and Bioengineering, vol. 64, no. 4, pp. 452–458, 1999. View at Publisher · View at Google Scholar
  42. C. Cao, S. Dong, Q. Geng, and Q. Guo, “Hydrodynamics and axial dispersion in a gas-liquid-(solid) EL-ALR with different sparger designs,” Industrial and Engineering Chemistry Research, vol. 47, no. 11, pp. 4008–4017, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Wachi, A. G. Jones, and T. P. Elson, “Flow dynamics in a draft-tube bubble column using various liquids,” Chemical Engineering Science, vol. 46, no. 2, pp. 657–663, 1991. View at Scopus
  44. K. Muthukumar and M. Velan, “Influence of additives and geometric design on hydrodynamic characteristics of an internal loop airlift reactor,” Journal of Chemical Engineering of Japan, vol. 38, no. 4, pp. 253–263, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Y. Chisti and M. Moo-Young, “Hydrodynamics and oxygen mass transfer in a pneumatic bioreactor devices,” Biotechnology and Bioengineering, vol. 31, no. 5, pp. 487–494, 1988. View at Scopus
  46. C. Bentifraouine, C. Xuereb, and J. P. Riba, “Effect of gas liquid separator and liquid height on the global hydrodynamic parameters of an external loop airlift contactor,” Chemical Engineering Journal, vol. 66, no. 2, pp. 91–95, 1997. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Gavrilescu and R. Z. Tudose, “Concentric-tube airlift bioreactors. Part I: effects of geometry on gas holdup,” Bioprocess Engineering, vol. 19, no. 1, pp. 37–44, 1998. View at Publisher · View at Google Scholar · View at Scopus
  48. J. C. Merchuk, “Airlift bioreactors: review of recent advances,” Canadian Journal of Chemical Engineering, vol. 81, no. 3-4, pp. 324–337, 2003. View at Scopus
  49. W. A. Al-Masry, “Effects of antifoam and scale-up on operation of bioreactors,” Chemical Engineering and Processing, vol. 38, no. 3, pp. 197–201, 1999. View at Publisher · View at Google Scholar
  50. H. Tsuge, S. Otatsume, K. Kobayashi, K. Terasaka, M. Hayasaki, and H. Kobayashi, “Liquid circulation and mass transfer in an external-loop airlift reactor with partitioning plates,” Journal of Chemical Engineering of Japan, vol. 37, no. 8, pp. 941–946, 2004. View at Publisher · View at Google Scholar