About this Journal Submit a Manuscript Table of Contents
International Journal of Chemical Engineering
Volume 2012 (2012), Article ID 920608, 9 pages
http://dx.doi.org/10.1155/2012/920608
Research Article

A Comparison of Nannochloropsis salina Growth Performance in Two Outdoor Pond Designs: Conventional Raceways versus the ARID Pond with Superior Temperature Management

1Marine Sciences Laboratory, Coastal Biogeochemistry Group, Pacific Northwest National Laboratory, Sequim, WA 98382, USA
2Department of Agricultural and Biosystems Engineering, The University of Arizona, Tucson, AZ 85721, USA
3Department of Chemical and Environmental Engineering, The University of Arizona, Tucson, AZ 85721, USA
4College of Agriculture, The University of Arizona, Tucson, AZ 85721, USA
5Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721, USA

Received 3 December 2011; Revised 11 March 2012; Accepted 14 March 2012

Academic Editor: Jose C. Merchuk

Copyright © 2012 Braden Crowe et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Oswald, “Current status of algae from wastes,” Chemical Engineering Symposium Series, vol. 65, pp. 87–92, 1969.
  2. D. Chaumont, “Biotechnology of algal biomass production: a review of systems for outdoor mass culture,” Journal of Applied Phycology, vol. 5, no. 6, pp. 593–604, 1993. View at Scopus
  3. E. Becker, Microalgae. Biotechnology and Microbiology, Cambridge University Press, Cambridge, UK, 1994.
  4. C. H. Su, L. J. Chien, J. Gomes et al., “Factors affecting lipid accumulation by Nannochloropsis oculata in a two-stage cultivation process,” Journal of Applied Phycology, vol. 23, no. 5, pp. 903–908, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Pushparaj, E. Pelosi, M. R. Tredici, E. Pinzani, and R. Materassi, “An integrated culture system for outdoor production of microalgae and cyanobacteria,” Journal of Applied Phycology, vol. 9, no. 2, pp. 113–119, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Ryan, P. Waller, M. Kacira, and P. Li, “Aquaculture raceway integrated design,” US Patent 0023360 A1, 2011.
  7. P. Waller, R. Ryan, M. Kacira, and P. Li, “The algae Raceway integrated design for optimal temperature management,” Journal of Biomass and Bioenergy. In press.
  8. I. Setlik, S. Veladimir, and I. Malek, “Dual purpose open circulation units for large scale culture of algae in temperature zones. I. Basic design considerations and scheme for pilot plant,” Algological Studies, vol. 1, pp. 111–164, 1970.
  9. R. R. Guillard and J. H. Ryther, “Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve),” Canadian Journal of Microbiology, vol. 8, pp. 229–239, 1962. View at Scopus
  10. http://www.instantocean.com/.
  11. M. H. Huesemann, T. S. Hausmann, R. Bartha et al., “Biomass productivities in wild type and pigment mutant of Cyclotella sp. (Diatom),” Applied Biochemistry and Biotechnology, vol. 157, no. 3, pp. 507–526, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. Product no. 2106103, http://www.hach.com/.
  13. Product no. 2106103, http://www.hach.com/.
  14. E. G. Bligh and W. J. Dyer, “A rapid method of total lipid extraction and purification.,” Canadian Journal of Biochemistry and Physiology, vol. 37, no. 8, pp. 911–917, 1959. View at Scopus
  15. W. Christie and X. Han, Lipid Analysis—Isolation, Separation, Identification and Lipidomic Analysis, The Oily Press, Bridgwater, UK, 2010.
  16. February 2011 climate report for Tucson, National Weather Service Forecast Office, Tucson AZ, 2011, http://www.wrh.noaa.gov/twc/climate/monthly/feb11.php.
  17. S. Boussiba, A. Vonshak, Z. Cohen, Y. Avissar, and A. Richmond, “Lipid and biomass production by the halotolerant microalga Nannochloropsis salina,” Biomass, vol. 12, no. 1, pp. 37–47, 1987. View at Scopus
  18. J. van Wagenen, S. Hobbs, P. Hooke, B. Crowe, and M. Huesemann, “Effect of light intensity and temperature on growth rate and fatty acid composistion in Nannochloropsis salina,” Energies, no. 3, pp. 731–740.
  19. M. Borowitza, “Culturing microalgae in outdoor ponds,” in Algal Culturing Techniques, R. Andersen, Ed., pp. 205–218, Elsevier Academic Press, Burlington, Mass, USA, 2005.
  20. Q. Hu, M. Sommerfeld, E. Jarvis et al., “Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances,” Plant Journal, vol. 54, no. 4, pp. 621–639, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Leonardi, C. Popovich, and M. Damiani, Feedstocks for Second-Generation Biodiesel: Microalgae's Biology and Oil Composition, Economic Effects of Biofuel Production, 2011, http://www.intechopen.com/articles/show/title/feedstocks-for-second-generation-biodiesel-microalgae-s-biology-and-oil-composition.
  22. H. Hu and K. Gao, “Response of growth and fatty acid compositions of Nannochloropsis sp. to environmental factors under elevated CO2 concentration,” Biotechnology Letters, vol. 28, no. 13, pp. 987–992, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Rodolfi, G. C. Zittelli, N. Bassi et al., “Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor,” Biotechnology and Bioengineering, vol. 102, no. 1, pp. 100–112, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. S. M. Renaud, D. L. Parry, L. V. Thinh, C. Kuo, A. Padovan, and N. Sammy, “Effect of light intensity on the proximate biochemical and fatty acid composition of Isochrysis sp. and Nannochloropsis oculata for use in tropical aquaculture,” Journal of Applied Phycology, vol. 3, no. 1, pp. 43–53, 1991. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Sukenik and Y. Carmeli, “Regulation of Fatty Acid Composition by Irradiance Level in the Eustigmatophyte Nannochloropsis sp.,” Journal of Phycology, vol. 25, pp. 686–692, 1989.
  26. D. Pal, I. Khozin-Goldberg, Z. Cohen, and S. Boussiba, “The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp.,” Applied Microbiology and Biotechnology, vol. 90, no. 4, pp. 1429–1441, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Converti, A. A. Casazza, E. Y. Ortiz, P. Perego, and M. del Borghi, “Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production,” Chemical Engineering and Processing: Process Intensification, vol. 48, no. 6, pp. 1146–1151, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Sukenik, O. Zmora, and Y. Carmeli, “Biochemical quality of marine unicellular algae with special emphasis on lipid composition. II. Nannochloropsis sp.,” Aquaculture, vol. 117, no. 3-4, pp. 313–326, 1993. View at Scopus
  29. J. Volkman, M. Brown, G. Dunstan, and S. Jeffrey, “Biochemical composition of marine microalgae from the class Eustigmatophyceae,” Journal of Phycology, vol. 29, pp. 69–78, 1993.
  30. I. Khozin-Goldberg and S. Boussiba, “Concerns over the reporting of inconsistent data on fatty acid composition for microalgae of the genus Nannochloropsis (Eustigmatophyceae),” Journal of Applied Phycology, vol. 23, no. 5, pp. 933–934, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. P. A. Hodgson, R. J. Henderson, J. R. Sargent, and J. W. Leftley, “Patterns of variation in the lipid class and fatty acid composition of Nannochloropsis oculata (Eustigmatophyceae) during batch culture,” Journal of Applied Phycology, vol. 3, no. 2, pp. 169–181, 1991. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Sukenik, Y. Yamaguchi, and A. Livne, “Alterations in lipid molecular species of the marine eustigmatophyte Nannochloropsis sp.,” Journal of Phycology, vol. 29, no. 5, pp. 620–626, 1993. View at Scopus