About this Journal Submit a Manuscript Table of Contents
International Journal of Chemical Engineering
Volume 2012 (2012), Article ID 945314, 15 pages
http://dx.doi.org/10.1155/2012/945314
Research Article

Characterization of Minimum Impeller Speed for Suspension of Solids in Liquid at High Solid Concentration, Using Gamma-Ray Densitometry

Department of Chemical Engineering, École Polytechnique de Montréal, P.O. Box 6079, Station Centre-Ville, Montreal, QC, Canada H3C 3A7

Received 28 February 2012; Accepted 21 April 2012

Academic Editor: See-Jo Kim

Copyright © 2012 Rouzbeh Jafari et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. A. Atieme-Obeng, W. R. Penney, and P. Armenante, “Solid-liquid mixing,” in Handbook of Industrial Mixing, Science and Practice, E. L. Paul, V. A. Atiemo-Obeng, and S. M. Kresta, Eds., pp. 543–584, John Wiley & Sons, Hoboken, NJ, USA, 2004.
  2. M. Bohnet and G. Niesmak, “Distribution of solid in stirred suspension,” German Chemical Engineering, vol. 3, no. 1, pp. 57–65, 1980. View at Scopus
  3. T. N. Zwietering, “Suspending of solid particles in liquid by agitators,” Chemical Engineering Science, vol. 8, no. 3-4, pp. 244–253, 1958. View at Scopus
  4. G. R. Kasat and A. B. Pandit, “Review on mixing characteristics in solid-liquid and solid-liquid-gas reactor vessels,” Canadian Journal of Chemical Engineering, vol. 83, no. 4, pp. 618–643, 2005. View at Scopus
  5. A. Mersmann, F. Werner, S. Maurer, and K. Bartosch, “Theoretical prediction of the minimum stirrer speed in mechanically agitated suspensions,” Chemical Engineering and Processing, vol. 37, no. 6, pp. 503–510, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. V. B. Rewatkar, K. S. M. S. Raghava Rao, and J. B. Joshi, “Critical impeller speed for solid suspension in mechanically agitated three-phase reactors. 1. Experimental part,” Industrial and Engineering Chemistry Research, vol. 30, no. 8, pp. 1770–1784, 1991. View at Scopus
  7. L. Musil, J. Vlk, and H. Jiroudková, “Suspending solid particles in an agitated tank with axial-type impellers,” Chemical Engineering Science, vol. 39, no. 4, pp. 621–628, 1984. View at Scopus
  8. C. M. Chapman, A. W. Nienow, M. Cooke, and J. C. Middleton, “Particle-gas-liquid mixing in stirred vessels—part I: particle-liquid mixing,” Chemical Engineering Research and Design, vol. 61, pp. 71–81, 1983.
  9. C. Buurman, G. Resoort, and A. Plaschkes, “Scaling-up rules for solids suspension in stirred vessels,” in Proceedings of the 5th European Conference on Mixing, 1985.
  10. G. Micale, V. Carrara, F. Grisafi, and A. Brucato, “Solids suspension in three-phase stirred tanks,” Chemical Engineering Research and Design, vol. 78, no. 3, pp. 319–326, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Micale, F. Grisafi, and A. Brucato, “Assessment of particle suspension conditions in stirred vessels by means of pressure gauge technique,” Chemical Engineering Research and Design, vol. 80, no. 8, pp. 893–902, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Jafari, P. A. Tanguy, and J. Chaouki, “Comprehensive review of just suspended speed in liquid-solid and gas-liquid-solid stirred tank reactors,” Chemical Engineering Journal, vol. 10, no. 1, 2012. View at Publisher · View at Google Scholar
  13. G. Baldi, R. Conti, and E. Alaria, “Complete suspension of particles in mechanically agitated vessels,” Chemical Engineering Science, vol. 33, no. 1, pp. 21–25, 1978. View at Scopus
  14. P. Ayazi Shamlou and A. Zolfagharian, “Incipient solid motion in liquids in mechanically agitated vessels,” in Proceedings of the 3rd Fluid Mixing Conference, pp. 195–208, September 1987. View at Scopus
  15. O. Molerus and W. Latzel, “Suspension of solid particles in agitated vessels—II. Archimedes numbers > 40, reliable prediction of minimum stirrer angular velocities,” Chemical Engineering Science, vol. 42, no. 6, pp. 1431–1437, 1987. View at Scopus
  16. K. Saravanan, A. W. Patwardhan, and J. B. Joshi, “Critical impeller speed for solid suspension in gas inducing type mechanically agitated contactors,” Canadian Journal of Chemical Engineering, vol. 75, no. 4, pp. 664–676, 1997. View at Scopus
  17. S. Hosseini, D. Patel, F. Ein-Mozaffari, and M. Mehrvar, “Study of solid-liquid mixing in agitated tanks through computational fluid dynamics modeling,” Industrial and Engineering Chemistry Research, vol. 49, no. 9, pp. 4426–4435, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. N. C. S. Kee and R. B. H. Tan, “CFD simulation of solids suspension in mixing vessels,” Canadian Journal of Chemical Engineering, vol. 80, no. 4, pp. 721–726, 2002. View at Scopus
  19. B. N. Murthy, R. S. Ghadge, and J. B. Joshi, “CFD simulations of gas-liquid-solid stirred reactor: prediction of critical impeller speed for solid suspension,” Chemical Engineering Science, vol. 62, no. 24, pp. 7184–7195, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Ochieng and A. E. Lewis, “CFD simulation of solids off-bottom suspension and cloud height,” Hydrometallurgy, vol. 82, no. 1-2, pp. 1–12, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Panneerselvam, S. Savithri, and G. D. Surender, “Computational fluid dynamics simulation of solid suspension in a gas-liquid-solid mechanically agitated contactor,” Industrial and Engineering Chemistry Research, vol. 48, no. 3, pp. 1608–1620, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. D. F. Fletcher and G. J. Brown, “Numerical simulation of solid suspension via mechanical agitation: effect of the modelling approach, turbulence model and hindered settling drag law,” International Journal of Computational Fluid Dynamics, vol. 23, no. 2, pp. 173–187, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Lea, “Suspension mixing tank-design heuristic,” Chemical Product and Process Modeling, vol. 4, no. 1, article 17, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. F. Wang, Z. Mao, and X. Shen, “Numerical study of solid-liquid two-phase flow in stirred tanks with Rushton impeller (II) Prediction of critical impeller speed,” Chinese Journal of Chemical Engineering, vol. 12, no. 5, pp. 610–614, 2004. View at Scopus
  25. A. Ochieng and M. S. Onyango, “CFD simulation of solids suspension in stirred tanks: review,” Hemijska Industrija, vol. 64, no. 5, pp. 365–374, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Bashiri, J. Chaouki, F. Bertrand, and M. Heniche, “Cfd-based compartmental modelling of stirred tank reactors,” in Proceedings of the GLS10, Braga, Portugal, 2011.
  27. J. Chaouki, F. Larachi, and M. P. Duduković, “Noninvasive tomographic and velocimetric monitoring of multiphase flows,” Industrial and Engineering Chemistry Research, vol. 36, no. 11, pp. 4476–4503, 1997. View at Scopus
  28. B. Esmaeili, J. Chaouki, and C. Dubois, “An evaluation of the solid hold-up distribution in a fluidized bed of nanoparticles using radioactive densitometry and fibre optics,” Canadian Journal of Chemical Engineering, vol. 86, no. 3, pp. 543–552, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. V. Kolar, “Suspensing solid particles in liquids by menas of mechanical agitation,” Collection of Czechoslovak Chemcial Communications, vol. 26, pp. 613–627, 1961.
  30. S. Narayanan, V. K. Bhatia, D. K. Guha, and M. N. Rao, “Suspension of solids by mechanical agitation,” Chemical Engineering Science, vol. 24, no. 2, pp. 223–230, 1969. View at Scopus
  31. D. Subbarao and V. K. Taneja, “Three phase suspensions in agitated vessels,” in Proceedings of the 3rd European Conference on Mixing, York, UK, 1979.
  32. P. Ditl and F. Rieger, “Suspension of solids particle—relative velocity of particles in turbulent mixing,” in Proceedings of the 5th European Conf on Mixing, Wurzburg, West Germany, 1985.
  33. L. Musil and J. Vlk, “Suspending solid particles in an agitated conical-bottom tank,” Chemical Engineering Science, vol. 33, no. 8, pp. 1123–1131, 1978. View at Scopus
  34. P. Ditl and F. Rieger, “Suspension of solid particles—letter to the editors,” Chemical Engineering Science, vol. 35, pp. 764–765, 1980.
  35. O. Molerus and W. Latzel, “Suspension of solid particles in agitated vessels—I. Archimedes numbers 40,” Chemical Engineering Science, vol. 42, no. 6, pp. 1423–1430, 1987. View at Scopus
  36. K. Wichterle, “Conditions for suspension of solids in agitated vessels,” Chemical Engineering Science, vol. 43, no. 3, pp. 467–471, 1988. View at Scopus
  37. P. M. Armenante and E. U. Nagamine, “Effect of low off-bottom impeller clearance on the minimum agitation speed for complete suspension of solids in stirred tanks,” Chemical Engineering Science, vol. 53, no. 9, pp. 1757–1775, 1998. View at Publisher · View at Google Scholar · View at Scopus
  38. P. M. Armenante and C. C. Chou, “Velocity profiles in a baffled vessel with single or double pitched-blade turbines,” AIChE Journal, vol. 42, no. 1, pp. 42–54, 1996. View at Scopus
  39. S. M. Kresta and P. E. Wood, “Mean flow field produced by a 45° pitched blade turbine: changes in the circulation pattern due to off bottom clearance,” Canadian Journal of Chemical Engineering, vol. 71, no. 1, pp. 42–53, 1993. View at Scopus
  40. T. Kumaresan and J. B. Joshi, “Effect of impeller design on the flow pattern and mixing in stirred tanks,” Chemical Engineering Journal, vol. 115, no. 3, pp. 173–193, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. S. M. Kresta, K. J. Bittorf, and D. J. Wilson, “Internal annular wall jets: radial flow in a stirred tank,” AIChE Journal, vol. 47, no. 11, pp. 2390–2401, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. Z. Jaworski, A. W. Nienow, and K. N. Dyster, “An LDA study of the turbulent flow field in a baffled vessel agitated by an axial, down-pumping hydrofoil impeller,” Canadian Journal of Chemical Engineering, vol. 74, no. 1, pp. 3–15, 1996. View at Scopus
  43. M. Schäfer, M. Yianneskis, P. Wächter, and F. Durst, “Trailing vortices around a 45° pitched-blade impeller,” AIChE Journal, vol. 44, no. 6, pp. 1233–1246, 1998. View at Scopus
  44. G. Zhou and S. M. Kresta, “Impact of tank geometry on the maximum turbulence energy dissipation rate for impellers,” AIChE Journal, vol. 42, no. 9, pp. 2476–2490, 1996. View at Scopus
  45. R. N. Sharma and A. A. Shaikh, “Solids suspension in stirred tanks with pitched blade turbines,” Chemical Engineering Science, vol. 58, no. 10, pp. 2123–2140, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. G. Montante, K. C. Lee, A. Brucato, and M. Yianneskis, “An experimental study of double-to-single-loop transition in stirred vessels,” Canadian Journal of Chemical Engineering, vol. 77, no. 4, pp. 649–659, 1999. View at Scopus
  47. K. J. Myers, A. Bakker, and R. R. Corpstein, “The effect of flow reversal on solids suspension in agitated vessels,” Canadian Journal of Chemical Engineering, vol. 74, no. 6, pp. 1028–1033, 1996. View at Scopus
  48. A. W. Nienow, “Suspension of solid particles in turbine agitated baffled vessels,” Chemical Engineering Science, vol. 23, no. 12, pp. 1453–1459, 1968. View at Scopus
  49. K. S. M. S. Raghava Rao, V. B. Rewatkar, and J. B. Joshi, “Critical impeller speed for solid suspension in mechanically agitated contactors,” AIChE Journal, vol. 34, no. 8, pp. 1332–1340, 1988. View at Scopus
  50. R. V. Roman and R. Z. Tudose, “Studies on transfer processes in mixing vessels: effect of gas on solid- liquid hydrodynamics using modified Rushton turbine agitators,” Bioprocess Engineering, vol. 17, no. 1, pp. 55–60, 1997. View at Publisher · View at Google Scholar · View at Scopus
  51. Y. Zhu and J. Wu, “Critical impeller speed for suspending solids in aerated agitation tanks,” Canadian Journal of Chemical Engineering, vol. 80, no. 4, pp. 682–687, 2002. View at Scopus
  52. A. W. Nienow, M. Konno, and W. Bujalski, “Studies on three-phase mixing: a review and recent results,” in Proceedings of the 5th European Conference on Mixing, Wurzburg, West Germany, 1985.
  53. J. J. Derksen, “Numerical simulation of solids suspension in a stirred tank,” AIChE Journal, vol. 49, no. 11, pp. 2700–2714, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. E. Rabinovich and H. Kalman, “Incipient motion of individual particles in horizontal particle-fluid systems—B. Theoretical analysis,” Powder Technology, vol. 192, no. 3, pp. 326–338, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. P. Stevenson, R. B. Thorpe, and J. F. Davidson, “Incipient motion of a small particle in the viscous boundary layer at a pipe wall,” Chemical Engineering Science, vol. 57, no. 21, pp. 4505–4520, 2002. View at Publisher · View at Google Scholar · View at Scopus
  56. R. Fishwick, M. Winterbottom, D. Parker, X. Fan, and H. Stitt, “The use of positron emission particle tracking in the study of multiphase stirred tank reactor hydrodynamics,” Canadian Journal of Chemical Engineering, vol. 83, no. 1, pp. 97–103, 2005. View at Scopus
  57. D. Guha, P. A. Ramachandran, and M. P. Dudukovic, “Flow field of suspended solids in a stirred tank reactor by Lagrangian tracking,” Chemical Engineering Science, vol. 62, no. 22, pp. 6143–6154, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. W. J. McManamey, “Circulation model for batch mixing in agitated, baffled vessels,” Transactions of the Institution of Chemical Engineers, vol. 58, no. 4, pp. 271–276, 1980. View at Scopus
  59. J. B. Joshi, A. B. Pandit, and M. M. Sharma, “Mechanically agitated gas-liquid reactors,” Chemical Engineering Science, vol. 37, no. 6, pp. 813–844, 1982. View at Scopus
  60. D. B. Holmes, R. M. Voncken, and J. A. Dekker, “Fluid flow in turbine-stirred, baffled tanks-I. Circulation time,” Chemical Engineering Science, vol. 19, no. 3, pp. 201–208, 1964. View at Scopus
  61. A. W. Nienow, “On impeller circulation and mixing effectiveness in the turbulent flow regime,” Chemical Engineering Science, vol. 52, no. 15, pp. 2557–2565, 1997. View at Publisher · View at Google Scholar · View at Scopus
  62. A. W. Patwardhan and J. B. Joshi, “Relation between flow pattern and blending in stirred tanks,” Industrial and Engineering Chemistry Research, vol. 38, no. 8, pp. 3131–3143, 1999. View at Scopus
  63. K. Van Der Molen and H. R. E. Van Maanen, “Laser-Doppler measurements of the turbulent flow in stirred vessels to establish scaling rules,” Chemical Engineering Science, vol. 33, no. 9, pp. 1161–1168, 1978. View at Scopus