About this Journal Submit a Manuscript Table of Contents
International Journal of Chemical Engineering
Volume 2012 (2012), Article ID 984827, 12 pages
http://dx.doi.org/10.1155/2012/984827
Research Article

Effect of Mixing on Microorganism Growth in Loop Bioreactors

1Department of Process Engineering and Applied Sciences, Dalhousie University, Halifax NS, Canada B3J 2X4
2Process Engineering Programme of The University of Trinidad and Tobago, Point Lisas Campus, Brechin Castle, Couva, Trinidad and Tobago

Received 27 January 2012; Accepted 24 May 2012

Academic Editor: Shaliza Binti Ibrahim

Copyright © 2012 A. M. Al Taweel et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. C. Merchuk and J. A. Asenjo, “The maned equation and mass transfer,” Biotechnology and Bioengineering, vol. 45, no. 1, pp. 91–94, 1995. View at Publisher · View at Google Scholar · View at Scopus
  2. OECD, The Application of Biotechnology to Industrial Sustainability, OECD Publications, Paris, France, 2001.
  3. C. U. Ugwu, J. C. Ogbonna, and H. Tanaka, “Improvement of mass transfer characteristics and productivities of inclined tubular photobioreactors by installation of internal static mixers,” Applied Microbiology and Biotechnology, vol. 58, no. 5, pp. 600–607, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. P. L. Rogers, Y. J. Jeon, and C. J. Svenson, “Application of biotechnology to industrial sustainability,” Process Safety and Environmental Protection, vol. 83, no. 6B, pp. 499–503, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Villadsen, “Innovative technology to meet the demands of the white biotechnology revolution of chemical production,” Chemical Engineering Science, vol. 62, no. 24, pp. 6957–6968, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Gavrilescu, R. V. Roman, and R. Z. Tudose, “Hydrodynamics in external-loop airlift bioreactors with static mixers,” Bioprocess Engineering, vol. 16, no. 2, pp. 93–99, 1997. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Eriksen, K. Strand, and L. Jorgenson, “Method of fermentation,” GB Patent 0120025.2, Assigned to Statoil, Stavanger Norway, 2001.
  8. E. B. Larsen, “U-shaped and/or nozzle U-loop fermentor and method of carrying out a fermentation process,” US Patent 6, 492, 135, 2002.
  9. A. M. Al Taweel, J. Yan, F. Azizi, D. Odedra, and H. G. Gomaa, “Using in-line static mixers to intensify gas-liquid mass transfer processes,” Chemical Engineering Science, vol. 60, no. 22, pp. 6378–6390, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Yazdian, S. A. Shojaosadati, M. Nosrati, M. R. Mehrnia, and E. Vasheghani-Farahani, “Study of geometry and operational conditions on mixing time, gas hold up, mass transfer, flow regime and biomass production from natural gas in a horizontal tubular loop bioreactor,” Chemical Engineering Science, vol. 64, no. 3, pp. 540–547, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. D. F. Olsen, J. B. Jorgensen, J. Villadsen, and S. B. Jorgensen, “Optimal operating points for SCP production in the U-loop reactor,” in Proceedings of the 9th International Symposium on Dynamics and Control of Process Systems (DYCOPS '10), M. Kothare, M. Tade, A. Vande Wouwer, and I. Smets, Eds., Leuven, Belgium, July 2010.
  12. A. Amanullah, B. C. Buckland, and A. W. Nienow, “Mixing in the fermentation and cell culture industries,” in Handbook of Industrial Mixing Science and Practice, E. L. Paul, V. A. Atiemo-Obeng, and S. M. Kresta, Eds., John Wiley & Sons, New York, NY, USA, 2004.
  13. M. Douaire, J. Morchain, and A. Liné, “Mini review: relationship between hydrodynamic conditions and substrate influx toward cells,” in Proceedings of the 13th European Conference on Mixing, London, UK, April 2009.
  14. Y. K. Lee, “Microalgal mass culture systems and methods: their limitation and potential,” Journal of Applied Phycology, vol. 13, no. 4, pp. 307–315, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. B. H. Um and Y. S. Kim, “Review: a chance for Korea to advance algal-biodiesel technology,” Journal of Industrial and Engineering Chemistry, vol. 15, no. 1, pp. 1–7, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Y. Chen, K. L. Yeh, R. Aisyah, D. J. Lee, and J. S. Chang, “Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review,” Bioresource Technology, vol. 102, no. 1, pp. 71–81, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Heyouni, M. Roustan, and Z. Do-Quang, “Hydrodynamics and mass transfer in gas-liquid flow through static mixers,” Chemical Engineering Science, vol. 57, no. 16, pp. 3325–3333, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. I. Reynolds, “Laboratory protocol PI,” in Proceedings of the 14th Process Intensification Network Meeting, BHR Group, Cranfield UK, November 2002.
  19. B. Weyand, M. Israelowitz, H. von Schroeder, and P. Vogt, “Fluid dynamics in bioreactor design: considerations for the theoretical and practical approach,” in Bioreactor Systems for Tissue Engineering, C. Kasper, M. van Griensven, and R. Portner, Eds., pp. 251–268.
  20. R. Munter, “Comparison of mass transfer efficiency and energy consumption in static mixers,” Ozone: Science & Engineering, vol. 32, no. 6, pp. 399–407, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Arwa, S. Baup, N. Gondrexon, J. P. Magnin, and J. Willison, “Enhancement of mass transfer characteristics and phenanthrene degradation in a two-phase partitioning bioreactor equipped with internal static mixers,” Biotechnology and Bioprocess Engineering, vol. 16, no. 2, pp. 413–418, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Zhong and Y. J. Yuan, “Responses of Taxus cuspidata to hydrodynamics in bubble column bioreactors with different sparging nozzle sizes,” Biochemical Engineering Journal, vol. 45, no. 2, pp. 100–106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Schmalzriedt, M. Jenne, K. Mauch, and M. Reuss, “Integration of physiology and fluid dynamics,” Advances in Biochemical Engineering/Biotechnology, vol. 80, pp. 19–68, 2003.
  24. F. Garcia-Ochoa and E. Gomez, “Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview,” Biotechnology Advances, vol. 27, no. 2, pp. 153–176, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Lu, F. G. Acién Fernández, E. Cañizares Guerrero, D. O. Hall, and E. Molina Grima, “Overall assessment of Monodus subterraneus cultivation and EPA production in outdoor helical and bubble column reactors,” Journal of Applied Phycology, vol. 14, no. 5, pp. 331–342, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. A. H. Scragg, A. M. Illman, A. Carden, and S. W. Shales, “Growth of microalgae with increased calorific values in a tubular bioreactor,” Biomass and Bioenergy, vol. 23, no. 1, pp. 67–73, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Yazdian, M. P. Hajiabbas, S. A. Shojaosadati, M. Nosrati, E. Vasheghani-Farahani, and M. R. Mehrnia, “Study of hydrodynamics, mass transfer, energy consumption, and biomass production from natural gas in a forced-liquid vertical tubular loop bioreactor,” Biochemical Engineering Journal, vol. 49, no. 2, pp. 192–200, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. R. K. Thakur, C. Vial, K. D. P. Nigam, E. B. Nauman, and G. Djelveh, “Static mixers in the process industries—a review,” Chemical Engineering Research and Design, vol. 81, no. 7, pp. 787–826, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Oshinowo and D. C. S. Kuhn, “Turbulence decay behind expanded metal screens,” Canadian Journal of Chemical Engineering, vol. 78, no. 6, pp. 1032–1039, 2000. View at Scopus
  30. F. Azizi and A. M. Al Taweel, “Population balance simulation of gas-liquid contacting,” Chemical Engineering Science, vol. 62, no. 24, pp. 7436–7445, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. A. W. M. Roes, A. J. Zeeman, and F. H. J. Bukkems, “High intensity gas/liquid mass transfer in the bubbly flow region during co-current upflow through static mixers,” vol. 87 of Institution of Chemical Engineers Symposium Series, pp. 231–238, 1984.
  32. I. Turunen and H. Haario, “Mass transfer in tubular reactors equipped with static mixers,” Chemical Engineering Science, vol. 49, no. 24, pp. 5257–5269, 1994. View at Scopus
  33. A. R. Toader, P. Hamersma, and R. F. Mudde, “Mass transfer in static mixers,” in Proceedings of the 10th International Gas Liquid Solid Reactor Engineering Conference, Praga, Portugal, June 2011.
  34. F. Azizi and A. M. Al Taweel, “Intensifying gas-liquid mass transfer operations,” in Proceedings of the 8th European Congress of Chemical Engineering, Berlin, Germany, September 2011.
  35. G. Hebrard, J. Zeng, and K. Loubiere, “Effect of surfactants on liquid side mass transfer coefficients: a new insight,” Chemical Engineering Journal, vol. 148, no. 1, pp. 132–138, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. T. Lemenand, P. Dupont, D. Della Valle, and H. Peerhossaini, “Turbulent mixing of two immiscible fluids,” Journal of Fluids Engineering, Transactions of the ASME, vol. 127, no. 6, pp. 1132–1139, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Israelidis, “Nutrition—Single Cell Protein, Twenty Years Later,” 2006, http://www.biopolitics.gr/BIOPOLITICS/HTML/PUBS/VOL1/isreali.htm.
  38. K. Rostami, M. T. Moazed, D. Zareh, and A. Kheirolomoom, “Single cell protein production using airlift reactor containing static mixer,” in Journal of Bioscience and Bioengineering, vol. 108, pp. 1389–1723, 2009.
  39. J. Nielsen, J. Villadsen, and G. Liden, Bioreaction Engineering Principles, Kluwer Academic/Plenum Publishers, 2003.
  40. L. Joergensen and H. Degn, “Growth rate and methane affinity of a turbidostatic and oxystatic continuous culture of Methylococcus capsulatus (Bath),” Biotechnology Letters, vol. 9, no. 1, pp. 71–76, 1987. View at Scopus
  41. K. S. Jun and S. C. Jain, “Oxygen transfer in bubbly turbulent shear flow,” Journal of Hydraulic Engineering, vol. 119, no. 1, pp. 21–36, 1993. View at Scopus
  42. K. Podila, A. M. Al Taweel, M. Koksal, A. Troshko, and Y. P. Gupta, “CFD simulation of gas-liquid contacting in tubular reactors,” Chemical Engineering Science, vol. 62, no. 24, pp. 7151–7162, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Klein, J. Maia, A. A. Vicente, L. Domingues, J. A. Teixeira, and M. Juraščík, “Relationships between hydrodynamics and rheology of flocculating yeast suspensions in a high-cell-density airlift bioreactor,” Biotechnology and Bioengineering, vol. 89, no. 4, pp. 393–399, 2005. View at Publisher · View at Google Scholar · View at Scopus