About this Journal Submit a Manuscript Table of Contents
International Journal of Chemical Engineering
Volume 2013 (2013), Article ID 128936, 13 pages
http://dx.doi.org/10.1155/2013/128936
Research Article

Hybrid Multiphase CFD Solver for Coupled Dispersed/Segregated Flows in Liquid-Liquid Extraction

1Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439, USA
2OpenCFD Limited Bracknell, Berkshire RG12 1BW, UK

Received 26 November 2012; Accepted 19 February 2013

Academic Editor: Alírio Rodrigues

Copyright © 2013 Kent E. Wardle and Henry G. Weller. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The flows in stage-wise liquid-liquid extraction devices include both phase segregated and dispersed flow regimes. As a additional layer of complexity, for extraction equipment such as the annular centrifugal contactor, free-surface flows also play a critical role in both the mixing and separation regions of the device and cannot be neglected. Traditionally, computional fluid dynamics (CFD) of multiphase systems is regime dependent—different methods are used for segregated and dispersed flows. A hybrid multiphase method based on the combination of an Eulerian multifluid solution framework (per-phase momentum equations) and sharp interface capturing using Volume of Fluid (VOF) on selected phase pairs has been developed using the open-source CFD toolkit OpenFOAM. Demonstration of the solver capability is presented through various examples relevant to liquid-liquid extraction device flows including three-phase, liquid-liquid-air simulations in which a sharp interface is maintained between each liquid and air, but dispersed phase modeling is used for the liquid-liquid interactions.